
Firm Heterogeneity, Capital Misallocation and
Optimal Monetary Policy∗

Beatriz González
BdE

Galo Nuño
BdE, BIS

Dominik Thaler
ECB

Silvia Albrizio
IMF

First version: October 2020. This version: October 2023

Abstract

This paper analyzes the link between monetary policy and capital misalloca-
tion in a New Keynesian model with heterogeneous firms and financial frictions.
In the model, firms with a high return to capital increase their investment more
strongly in response to a monetary policy expansion, thus reducing misallocation.
This feature creates a new time-inconsistent incentive for the central bank to en-
gineer an unexpected monetary expansion to temporarily reduce misallocation.
However, price stability is the optimal timeless response to demand, financial or
TFP shocks. Finally, we present firm-level evidence supporting the theoretical
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1 Introduction

An inefficient allocation of capital across firms may significantly reduce aggregate total
factor productivity (TFP). In a market economy, capital is allocated according to the
investment decisions of individual firms. Monetary policy is an important driver of
these investment decisions, as it directly affects firms’ funding costs and indirectly
influences firms’ revenues and other costs such as wages. If firm investment responds
heterogeneously to changes in monetary policy, then monetary policy can affect capital
misallocation and thus TFP.

Monetary policy design has traditionally taken aggregate productivity as given. In
the workhorse model of monetary policy – the New Keynesian model – the central bank
faces a trade-off between stabilizing inflation and reducing the short-term deviations of
output from its potential level. If monetary policy can affect misallocation and TFP,
the central bank should also ponder how its decisions will impact the supply side of the
economy in the medium term. Such considerations may be of particular relevance in
phases of very active monetary policy, such as in the current inflationary environment.

The objective of this paper is to shed light on the interaction between monetary
policy and capital misallocation and its implications for optimal monetary policy. To
this end, we develop a tractable framework that combines the workhorse New Keyne-
sian model with a model of firm heterogeneity, based on Moll (2014), in which capital
misallocation arises from financial frictions. The economy is populated by a continuum
of firms owned by entrepreneurs, who have access to a constant-returns-to-scale tech-
nology. Entrepreneurs are heterogeneous in their net worth and receive idiosyncratic
productivity shocks. They face financial frictions, as their borrowing cannot exceed
a multiple of their net worth. This results in endogenous capital misallocation: en-
trepreneurs with productivity above a certain threshold are constrained, and borrow
as much capital as possible since their marginal revenue product of capital (MRPK) is
higher than their cost of capital. Entrepreneurs below the threshold are unconstrained:
their optimal size is zero and they choose to lend their net worth to other entrepreneurs.1

This economy allows for an aggregate representation akin to that in the standard New
Keynesian model with capital, except that in this case TFP is endogenous, and the
dynamics of TFP are determined by the evolution of the distribution of capital among

1This is the tractable limit case of an economy with decreasing returns to scale at the firm level,
in which unconstrained firms are optimally very small and the bulk of production is carried out by
productive and constrained firms.
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entrepreneurs. We calibrate the model to replicate key firm-level moments of Spanish
firms.

We start by analyzing the interactions between monetary policy and misallocation.
We show that the allocation of capital, and hence TFP, improve in response to an
expansionary monetary policy shock. This is because the policy expansion alleviates
financial frictions, such that high-MRPK firms increase their investment more than the
low-MRPK firms, raising the share of the aggregate capital stock used by high-MRPK
firms. We call this the capital misallocation channel of monetary policy.

Next, we investigate the implications of this capital misallocation channel for the
optimal conduct of monetary policy by analyzing the Ramsey problem of a benevolent
central bank. This is technical challenge, as the space state of the model includes the
distribution of net worth across firms, an infinite-dimensional object. We overcome it
by introducing a new algorithm to compute optimal policy problems in the presence of
non-trivial heterogeneity.

We study first optimal policy in the absence of shocks. The steady state of the Ram-
sey problem features zero-inflation, as in the standard complete markets New Keynesian
model, which is nested.2 However, the misallocation channel introduces a new source
of time inconsistency as the central bank attempts to exploit the capital misallocation
channel: When starting from the zero-inflation steady state, the central bank engineers
a temporary monetary expansion in the short run while committing to price stability
in the long run. This strategy allows the central bank to temporarily improve capital
allocation and increase TFP, even if it means tolerating positive inflation during a cer-
tain period of time. We find this source of time inconsistency to be quantitatively more
relevant than the standard time-inconsistency motive in the New Keynesian literature,
namely the desire to exploit the short-run trade-off between inflation and output gap.

We analyze next the optimal monetary policy from a ’timeless perspective’ (Wood-
ford, 2003), in which the central bank respects the commitments that it has optimally
made at a date far in the past. This allows us to study systematic changes in monetary
policy in response to shocks. We consider demand, financial and TFP shocks. The
optimal response in all these cases features price stability. There is thus no meaningful
trade-off between price stability and managing misallocation, just as the standard New
Keynesian model features no trade-off between price stability and aggregate demand

2Our model nests the complete-market model as a particular case in which the borrowing constraint
is arbitrarily loose, or in which entrepreneurs productivity levels are arbitrarily similar.
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management (this is commonly known as the “divine coincidence”, Blanchard and Gali,
2007) . This implies that, even if the central bank can affect the supply side of the
economy through its monetary policy, it finds optimal not to do so in a systematic way
and it rather sticks to price stability.

The implementation of the optimal policy policy, however, differs with respect to the
complete-market case. Under incomplete markets, a negative demand shock leads to an
endogenous fall in TFP through the increase of capital misallocation. The fall in TFP,
in turn, amplifies the reduction of the natural rate brought about by the demand shock
itself, such that the natural rate drops more than in the case with complete markets.3

As the interest rate mimics the natural rate, it declines more, and more persistently,
than in the standard New Keynesian model. This difference in implementation matters
when nominal interest rates are constrained by the zero lower bound (ZLB). The optimal
policy in this case, originally proposed by Eggertsson and Woodford (2004), is “low for
longer”: nominal rates should remain at the ZLB longer than what would be prescribed
if the ZLB were not present.4 In the case with incomplete markets, the larger and more
persistent decline in natural rates due to the endogenous fall in TFP leads to what we
call a “low for even longer” optimal policy: nominal rates should remain at the ZLB
for significantly longer than they should under complete markets. Doing so reduces
shortfalls not only of inflation and output, but also of TFP.

Finally, we present empirical evidence on the capital misallocation channel of mon-
etary policy. We combine micro-level panel data on the quasi-universe of Spanish firms
with monetary policy shocks identified using the high-frequency and sign-restrictions
approach of Jarociński and Karadi (2020). The mechanism at play in the model is sup-
ported by the data: firms with high MRPK increase their investment relatively more
than low-MRPK firms in response to an expansionary monetary policy shock. This
implies a shift in the distribution of capital towards high-MPRK firms, improving the
capital allocation. Using a simple model-derived measure of aggregate misallocation,
we find that the positive impact of expansionary monetary policy is quantitatively in
line with the data.5

3The natural rate is the rate that would pertain in the absence of nominal rigidities.
4See also Eggertsson et al. (2003); Adam and Billi (2006), and Nakov et al. (2008).
5The fact that TFP increases after a positive monetary policy shock has been previously docu-

mented by Evans (1992), Christiano et al. (2005), Garga and Singh (2021), Jordà et al. (2020), Moran
and Queralto (2018), Meier and Reinelt (2020) or Baqaee et al. (2021), among others. While these
authors propose complementary mechanisms such as R&D, hysteresis effects, or markup heterogeneity
to account for it, our findings suggest that capital misallocation also plays a significant role.
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This paper contributes to three strands of the literature. First, our model is related
to the extensive literature on capital misallocation, and the different channels that
may affect it, such as Hsieh and Klenow (2009) or Midrigan and Xu (2014) – see
Restuccia and Rogerson (2017) for a review on this literature. Our paper builds on
Moll (2014), whose tractable heterogeneous producer model we augment with a New
Keynesian monetary block to understand how monetary policy affects misallocation.6

The fact that monetary policy expansions reduce misallocation and increase TFP might
seem in conflict with previous papers, such as Reis (2013), Gopinath et al. (2017), or
Asriyan et al. (2021), who argue that a decline in real interest rates may fuel capital
misallocation in real economies. We show that there is no such a conflict: our model
also delivers a decline in TFP in response to a fall in real rates due to a negative
demand shock when prices are flexible. The difference in the behavior of misallocation
compared to a monetary policy shock is due to the different natural rate dynamics:
though in response to both shocks the real rate drops, the natural rate falls only for
the demand shock, remaining constant for the monetary policy shock. Just observing
the dynamics of real interest rates is not sufficient to infer whether misallocation will
improve or worsen. In the presence of nominal rigidities, it is the joint dynamics of real
and natural rates that matter.

Second, an emerging literature analyzes how financial frictions and firm heterogene-
ity affect the transmission of monetary policy.7 Our paper is especially related to those
papers analyzing the heterogeneous investment sensitivity to monetary policy. This
strand of literature finds that firms’ investment is more responsive to monetary policy
shocks when their default risk is low (Ottonello and Winberry, 2020), when they have
high leverage or fewer liquid assets (Jeenas, 2020), when they are young and do not pay
dividends (Cloyne et al., 2018), when their excess bond premia is low (Ferreira et al.,
2022), or when a higher fraction of their debt matures (Jungherr et al., 2022). We con-
tribute to this literature by showing that firms with high-MRPK are more responsive
to monetary policy shocks, and by analyzing the implications of this on the optimal

6Buera and Nicolini (2020) employ a discrete-time version of Moll (2014) with cash-in-advance
constraints to analyze the impact of different monetary and fiscal policies after a credit crunch.

7One strand of this literature analyzes the links between monetary policy, firm heterogeneity and the
allocation of resources through heterogeneity in markups and entry-exit (e.g. Meier and Reinelt, 2020,
Bilbiie et al., 2014 or Baqaee et al., 2021), risk-taking (David and Zeke, 2021), firm-level productivity
trends (Adam and Weber, 2019), or the importance of the price elasticity of investment (Koby and
Wolf, 2020).
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conduct of monetary policy.8

Finally, this paper contributes to the literature analyzing optimal monetary policy
problems in heterogeneous-agent economies. A number of recent papers, such as Bhan-
dari et al. (2021), Acharya et al. (2020), Bilbiie and Ragot (2020), Le Grand et al.
(2022), Mckay and Wolf (2022), or Auclert et al. (2022) propose different approaches
to solve these problems. Similar to Nuño and Thomas (2022), Bigio and Sannikov
(2021), Smirnov (2022), or Dávila and Schaab (2022), we set up the problem as one
of infinite-dimensional optimal control. We propose a new, simple and broadly appli-
cable algorithm to solve these kinds of problems, which leverages the computational
advantages of continuous time. The key novelty of our algorithm is to discretize the
Ramsey planners’ continuous-time, continuous-state problem using finite differences (as
in Achdou et al., 2021), and then to use symbolic differentiation to obtain the planner’s
first-order conditions. This produces a high-dimensional nonlinear dynamic system,
which is efficiently solved in the sequence space using a Newton algorithm.9 Further-
more, this paper is, to the best of our knowledge, the first to analyze optimal monetary
policy in a model with heterogeneous firms.

The structure of the paper is as follows. Section 2 presents the model, which we
calibrate in Section 3. Section 4 analyzes the drivers and dynamics of misallocation.
Section 5 studies optimal monetary policy. Section 6 provides supporting empirical
evidence for the main mechanism of the model. Finally, Section 7 concludes.

2 Model

We propose a New Keynesian closed economy model with financial frictions and hetero-
geneous firms. Time is continuous and there is no aggregate uncertainty. The economy
is populated by five types of agents: households, the central bank, entrepreneurs that
operate input-good firms, retail, and final goods producers. Entrepreneurs are het-
erogeneous in their net worth and productivity. They combine capital and labor to
produce the input good. The input good is differentiated by imperfectly competitive

8In complementary empirical work, Albrizio et al. (2023) analyze the impact of monetary policy on
capital misallocation in more detail, both from an intensive and extensive margin. They find that the
intensive margin is the main reallocation channel and that firms’ investment sensitivity to monetary
policy is driven by their MRPK rather than their age, leverage, or cash.

9The algorithm can be implemented using several available software packages. To make our method
accessible to a large audience, we employ Dynare.
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retail goods producers facing sticky prices, whose output is aggregated by the final good
producer. The latter two types of firms are standard in New Keynesian models.

2.1 Heterogeneous input-good firms

The heterogeneous-firm block is based on Moll (2014). There is a continuum of en-
trepreneurs. Each entrepreneur owns some net worth, which they hold in units of capi-
tal. They can use this capital for production in their own input-good producing firm –
firm for short – or lend it to other entrepreneurs. Similar to Gertler and Karadi (2011),
we assume that entrepreneurs are atomistic members of the representative household,
to whom they may transfer dividends.10

Entrepreneurs are heterogeneous in two dimensions: their net worth at and their
idiosyncratic productivity zt.11 Each entrepreneur owns a constant returns to scale
(CRS) technology which uses capital kt and labor lt to produce the homogeneous input
good yt:

yt = ft(zt, kt, lt) = (ztkt)
α(lt)

1−α. (1)

The capital share α ∈ (0, 1) is the same across entrepreneurs. Idiosyncratic productivity
zt follows a diffusion process,

dzt = µ(zt)dt+ σ(zt)dWt, (2)

where µ(z) is the drift and σ(z) the diffusion of the process.12

Entrepreneurs can use their net worth to produce in their firm with their own
technology, or lend it to firms owned by other entrepreneurs. Firms employ labor lt,
which they hire at the real wage wt, and capital kt, which is the sum of the entrepreneur’s
net wort (at) and what the firm borrows (bt = kt − at) at the real cost of capital Rt.
Capital is borrowed from the agents which save, i.e. both households and lending
entrepreneurs.13

10This assumption is the only relevant difference between the real side of our model and the model of
Moll (2014). We consider it to avoid having to deal with redistributive issues between households and
entrepreneurs when analyzing optimal monetary policy. Both models produce linear dividend policies,
so they can be seen as equivalent from a positive perspective.

11For notational simplicity, we use xt instead of x(t) for the variables depending on time. Further-
more, we suppress the input goods firm’s index.

12The process is bounded with reflective barriers.
13Since debt contracts are instantaneous and in units of capital, firms balance sheets are not exposed
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Firms sell the input good at the real price mt = pyt /Pt, which is the inverse of the
gross markup associated to retail products over input goods, being pyt the nominal price
of the input good and Pt the price of the final good, i.e. the numeraire. Entrepreneurs
use the return on their activities to distribute (non-negative) dividends dt to the house-
hold and to invest in additional capital at the real price qt. Capital depreciates at rate
δ. An entrepreneur’s flow budget constraint can be expressed as follows

ȧt =
1

qt

mtft(zt, kt, lt)− wtlt −Rtkt︸ ︷︷ ︸
Firm’s profits

+ (Rt/qt − δ)︸ ︷︷ ︸
Return on net worth

qtat − dt︸︷︷︸
Dividends

 . (3)

Note that we have rearranged the budget constraint to yield the law of motion of net
worth in units of capital.

Firms face a collateral constraint, such that the value of capital used in production
cannot exceed γ > 1 of their net worth,14

qtkt ≤ γqtat. (4)

Entrepreneurs retire and return to the household according to an exogenous Poisson
process with arrival rate η. Upon retirement they pay all their net worth, valued qtat, to
the household, and they are replaced by a new entrepreneur with the same productivity
level. Entrepreneurs maximize the discounted flow of dividends, which is given by

V0(z, a) = max
kt,lt,dt

E0

ˆ ∞

0

e−ηtΛ0,t

 dt︸︷︷︸
Dividends

+ η qtat︸︷︷︸
Terminal value

 dt, (5)

subject to the budget constraint (3), the collateral constraint (4), and the productivity
process (2). Future profits are discounted by the household’s stochastic discount factor
Λ0,t. Below we show that Λ0,t = e−

´ t
0 rsds, where rt is the real interest rate.

We can split the entrepreneurs’ problem into two parts: a static profit maximization

to Fisherian debt deflation or financial accelerator effects (Bernanke et al., 1999). Asriyan et al. (2021)
include the latter. This assumption keeps the model tractable. Allowing for such effects would amplify
the effect of monetary policy shocks discussed later.

14Assuming alternatively that firms’ borrowing is constrained to a multiple of their earnings (Lian
and Ma, 2020) would amplify the effect of monetary policy shocks discussed later on. The increase in
high-productivity firms’ profits, that (as we explain below) drives the positive impact of expansion-
ary monetary policy on TFP, would relax the constraint of high-productivity firms and improve the
allocation of capital further.
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problem and a dynamic dividend-distribution problem. First, entrepreneurs maximize
firm profits given their productivity and net worth,

max
kt,lt

{mtft(zt, kt, lt)− wtlt −Rtkt} , (6)

subject to the collateral constraint (4).
Since the production function has constant returns to scale, entrepreneurs find it

optimal to operate a firm at the maximum scale defined by the collateral constraint
whenever their idiosyncratic productivity is high enough, that is whenever z exceeds a
certain threshold level z∗t . Else the optimal size of the firm is k∗(z) = 0, because they
cannot run a profitable firm given their low productivity. In that case the borrowing
constraint does not bind and the entrepreneur rents out its capital. From now on, we
refer to the two groups of entrepreneurs as ’constrained’ and ’unconstrained’. That is,
firm’s demand for capital and labor is:

kt(zt, at) =

γat, if zt ≥ z∗t ,

0, if zt < z∗t ,
(7)

lt(zt, at) =

(
(1− α)mt

wt

)1/α

ztkt(zt, at). (8)

Firm’s profits are then given by

Φt(zt, at) = max {ztφt −Rt, 0} γat, where φt = α

(
1− α

wt

) 1−α
α

m
1
α
t . (9)

Note that the term ztφt is simply the marginal revenue product of capital (MRPK) of
the firm with productivity zt. The productivity cut-off, above which firms are profitable,
is given by

z∗tφt = Rt, (10)

This expression tells us that the MRPK of the marginal firm equals the marginal cost
of capital. Any firm with z > z∗ thus makes profits over and above the cost of capital.
These profits arise despite perfect competition, because the borrowing constraint binds.

Note furthermore, that factor demands and profits are linear in net worth. This is a
consequence of the CRS technology and makes the model significantly more tractable.
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As discussed by Moll (2014), the assumption of CRS in firms’ production function (1)
can be seen as the limiting case of decreasing returns to scale (DRS), yt = [(ztkt)

α(lt)
1−α]

ν
,

ν < 1, when ν → 1. In the case with DRS, there is a threshold z∗ (a) which depends
on net-worth, such that the firms with z ≤ z∗ (a) are unconstrained and produce at
their optimal level (k∗(z)), whereas those with z > z∗ (a) are constrained. When this
threshold increases, previously marginally constrained firms become unconstrained and
reduce their capital stock below the maximum implied by the constraint. When ν → 1,
the optimal size of low-productivity firms, and hence its production, are very small,
k∗(z), y∗(z) → 0. Therefore our model should be understood as the tractable limit of
the more realistic DRS case.15 This highlights a crucial point regarding the interpreta-
tion of the model: the threshold z∗ does not capture entry/exit, but rather the limiting
case of expansions and contractions of the optimal size of active firms. Entry and exit
of firms in this model is exogenous, and given by the exogenous retirement rate η.

Second, entrepreneurs choose the dividends dt that they pay to the household. The
solution to this problem is derived in Appendix B.1. There we show how entrepreneurs
never distribute dividends (dt = 0) until retirement, when they bring all their net worth
home to the household. The intuition is the following. The return on one unit of capital
in the hands of the entrepreneur is at least (Rt−δqt), while for the household the return
of this unit of capital is exactly (Rt−δqt). It is thus always worthwhile for entrepreneurs
to keep their funds in the firm. To keep things simple, as in Gertler and Karadi, 2011
we assume the representative household uses a fraction ψ ∈ (0, 1) of these dividends to
finance the net worth of the new entrepreneurs, so net dividends are (1− ψ) of the net
worth of retiring entrepreneurs.

Using (9), the law of motion of an entrepreneur’s net worth (3) can thus be rewritten
as16

ȧt =
1

qt
[(γmax {ztφt −Rt, 0}+Rt − δqt)at] . (11)

15Ferreira et al., 2023 find that financially constrained firms are found across the entire firm-size
distribution.

16In the model, there are no firm-level capital adjustment costs. Furthermore, due to CRS, changes
in z∗ imply that firms at the margin disinvest or reinvest fully instantaneously. In a DRS model the
changes in the capital stock of a firm that switches from being constrained to being unconstrained
and thus crossing the threshold z∗ (a) would be smaller. This is so since the optimal capital stock
of unconstrained firms would be positive (and not zero, as in the limiting CRS case). These smaller
changes in capital can be achieved by reductions in the gross investment rate, without requiring the
reselling of capital, provided the depreciation rate is high enough.
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2.2 Households

There is a representative household, composed of workers and entrepreneurs, that saves
in capital Dt or in nominal instantaneous bonds BN

t . Nominal bonds are in zero net
supply. Workers supply labor Lt. The household maximizes

Wt = max
Ct,Lt,BN

t ,Dt

ˆ ∞

0

e−ρ
h
t tu(Ct, Lt)dt. (12)

s.t. Ḋtqt = (Rt − δqt)Dt − SNt − Ct + wtLt + Tt, (13)

ḂN
t = (it − πt)B

N
t + SNt ,

where SNt is the investment into nominal bonds and Tt are the profits received by the
household, which is the sum of the profits of the capital and retail-goods producers
(discussed below) and net dividends received from entrepreneurs ((1− ψ)ηqtAt).

We assume separable utility of CRRA form, i.e., u(Ct, Lt) =
C1−ζ

t

1−ζ −Υ
L1+ϑ
t

1+ϑ
. Solving

this problem (see Appendix B.2 for details), we obtain the Euler equation,

Ċt
Ct

=
rt − ρht
ζ

, (14)

the labor supply condition

wt =
ΥLϑt

C−ζ
t

, (15)

and the Fisher equation
rt = it − πt, (16)

where, for convenience, we have made use of the following definition of the real interest
rate

rt ≡
Rt − δqt + q̇t

qt
, (17)

which equals the real return on capital adjusted by capital gains and depreciation.
Integrating the Euler equation (14), we can define the stochastic discount factor Λ0,t as

Λ0,t ≡ e−
´ t
0 ρ

h
t ds

u′c (Ct)

u′c (C0)
= e−

´ t
0 rsds.
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2.3 Final good producers

As usual in New Keynesian models, a competitive representative final goods producer
aggregates a continuum of output produced by retailer j ∈ [0, 1],

Yt =

(ˆ 1

0

y
ε−1
ε

j,t dj

) ε
ε−1

, (18)

where ε > 0 is the elasticity of substitution across goods. Cost minimization implies

yj,t (pj,t) =

(
pj,t
Pt

)−ε

Yt, where Pt =
(ˆ 1

0

p1−εj,t dj

) 1
1−ε

.

2.4 Retailers

We differentiate between heterogeneous input-good firms and retailers.17 We assume
that monopolistic competition occurs at the retail level. Retailers purchase input goods
from the input-good firms, differentiate them and sell them to final good producers.
Each retailer j chooses the sales price pj,t to maximize profits subject to price adjustment
costs as in Rotemberg (1982), taking as given the demand curve yj,t (pj,t) and the price
of input goods, pyt . We assume the government pays a proportional constant subsidy
τ = ε

ε−1
on the input good, so that the net real price for the retailer is m̃t = mt(1− τ).

This subsidy is financed by a lump-sum tax on the retailers Ψt. This fiscal scheme is
introduced to eliminate the distortions caused by imperfect competition in steady state,
as common in the optimal policy literature. The adjustment costs are quadratic in the
rate of price change ṗj,t/pj,t and expressed as a fraction of output Yt,

Θt

(
ṗj,t
pj,t

)
=
θ

2

(
ṗj,t
pj,t

)2

Yt, (19)

where θ > 0. Suppressing notational dependence on j, each retailer chooses {pt}t≥0 to
maximize the expected profit stream, discounted at the stochastic discount factor of

17Distinguishing between heterogeneous input-good firms and retailers is standard practice in pre-
vious New Keynesian models featuring firm heterogeneity and nominal rigidities, such as Ottonello
and Winberry (2020) or Jeenas (2020). Besides greater tractability, it avoids the possibly implausible
countercyclical behaviour of New Keynesian markups interfering with our mechanism, which we see as
an important advantage. It also does justice to the fact that retail prices are significantly more sticky
than intermediate goods prices (for Europe see Alvarez et al. (2010), Alvarez et al. (2006), Gautier
et al. (2023)).
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the household,

ˆ ∞

0

Λ0,t

[(
pt
Pt

− m̃t

)(
pt
Pt

)−ε

Yt −Ψt −Θt

(
ṗt
pt

)]
dt. (20)

The symmetric solution to the pricing problem yields the New Keynesian Phillips curve
(see Appendix B.3), which is given by(

rt −
Ẏt
Yt

)
πt =

ε

θ
(m̃t −m∗) + π̇t, m∗ =

ε− 1

ε
. (21)

where πt denotes the inflation rate πt = Ṗt/Pt.

2.5 Capital producers

A representative capital producer owned by the representative household produces cap-
ital and sells it to the household and the firms at price qt, which she takes as given. Her
cost function is given by (ιt + Ξ (ιt))Kt where ιt is the investment rate and Ξ (ιt) is a
capital adjustment cost function. She maximizes the expected profit stream, discounted
at the stochastic discount factor of the household. Profits are paid in a lump-sum fash-
ion to the household.

Wt = max
ιt,Kt

ˆ ∞

0

Λ0,t (qtιt − ιt − Ξ (ιt))Ktdt. (22)

s.t. K̇t = (ιt − δ)Kt.

The optimality conditions imply (see Appendix B.4)

rt = (ιt − δ) +
q̇t − Ξ′′ (ιt) ι̇t
qt − 1− Ξ′ (ιt)

− qtιt − ιt − Ξ (ιt)

qt − 1− Ξ′ (ιt)
. (23)

2.6 Distribution

As previously explained, we assume that, for each entrepreneur retiring to the house-
hold, a new entrepreneur enters operating the same technology, that is, with the same
productivity level. This new entrepreneur receives a startup capital stock from the
household in a lump-sum fashion, equal to a fraction ψ < 1 of the net worth of the
entrepreneur she replaces. Let Gt(z, a) be the joint distribution of net worth and pro-
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ductivity. The evolution of its density gt(z, a) is given by the Kolmogorov Forward
equation

∂gt(z, a)

∂t
= − ∂

∂a
[gt(z, a)st(z)a]︸ ︷︷ ︸

Retained earnings

− ∂

∂z
[gt(z, a)µ(z)] +

1

2

∂2

∂z2
[gt(z, a)σ

2(z)]︸ ︷︷ ︸
Productivity changing randomly

−ηgt(z, a)︸ ︷︷ ︸
Entrepreneurs retiring

+
η

ψ
gt(z,

a

ψ
))︸ ︷︷ ︸

Entrepreneurs entering

, (24)

where st(z) is the entrepreneurs’ investment rate from (11)

st(z) ≡
ȧt
at

=
1

qt
( γmax {zφt −Rt, 0}︸ ︷︷ ︸
Profit rate from operating the firm

+Rt − δqt), (25)

and 1/ψgt(z, a/ψ) is the density of new entrepreneurs entering.
Using this two-dimensional distribution we can define the one-dimensional distri-

bution of net-worth shares as ωt(z) ≡ 1
At

´∞
0
agt(z, a)da. This distribution measures

the share of net worth held by entrepreneurs with productivity z. Due to the linearity
of the firms choices in a, it contains all the relevant information in a more compact
form. Given this definition and the structure of the problem, net-worth shares are non-
negative, continuous, once differentiable everywhere and they integrate up to 1. The
law of motion of net worth shares is given by (see Appendix B.5)

∂ωt(z)

∂t
=

[
st(z)−

Ȧt
At

− (1− ψ)η

]
ωt(z)−

∂

∂z
µ(z)ωt(z) +

1

2

∂2

∂z2
σ2(z)ωt(z). (26)

2.7 Market Clearing and Aggregation

Market clearing. Define aggregate capital used in production asKt =
´
kt(z, a)dGt(z, a),

aggregate firm net worth as At =
´
adGt(z, a), and aggregate net debt as Bt =´

bt(z, a)dGt(z, a). Since the capital borrowed by an individual entrepreneur equals
that used in production minus its net worth bt = kt − at, we have that

Kt = At +Bt, (27)
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Asset market clearing requires that net borrowing of entrepreneurs Bt equals net savings
of the household Dt,

Bt = Dt. (28)

Let Ω(z) be the cumulative distribution of net-worth shares, i.e. Ωt(z) =
´ z
0
ωt (x) dx.

By combining equations (27), (28), aggregating capital used by firms (7), and solving
for At, we obtain

At =
Dt

γ(1− Ωt(z∗t ))− 1
. (29)

Labor market clearing implies

Lt =

ˆ ∞

0

lt(z, a)dGt(z, a). (30)

Aggregation. Aggregating up, one can express output as a function of aggregate
factors and aggregate TFP

Yt = ZtK
α
t Lt

1−α, (31)

where aggregate TFP Zt is an endogenous variable given by

Zt =
(
Eωt(·) [z | z > z∗t ]

)α
=

(´∞
z∗t
xωt (x) dx

1− Ωt(z∗t )

)α

. (32)

This highlights that, in terms of output, the model is isomorphic to a standard representative-
agent New Keynesian model with capital and TFP Zt. TFP is endogenous and evolves
over time and, as we discuss below, its evolution depends on factor prices.

Note that TFP Zt serves as a measure of misallocation. The financial frictions
faced by entrepreneurs imply that capital is not optimally allocated. The entrepreneur
operating the most productive firm does not have enough net worth to operate the
whole capital stock, hence less productive firms operate as well, which is suboptimal
and reduces TFP. Thus the more misallocated capital is, the lower is TFP.

Factor prices are

wt =(1− α)mtZtK
α
t Lt

−α, (33)

Rt =αmtZtK
α−1
t Lt

1−α z∗t
Eωt(·) [z | z > z∗t ]

. (34)
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Finally, the law of motion of the aggregate net-worth of entrepreneurs is given by

Ȧt
At

=
1

qt

[
γ(1− Ωt(z

∗
t ))
(
αmtZtK

α−1
t Lt

1−α −Rt

)
+Rt − δqt − qt(1− ψ)η)

]
. (35)

Appendix B.6 derives these aggregate formulae step by step.

2.8 Central Bank

The central bank controls the nominal interest rate it on nominal bonds held by house-
holds. For the positive analysis in Section 4 we assume that the central bank sets the
nominal rate according to a standard Taylor rule of the form

di = −υ
(
it −

(
ρh + ϕ (πt − π̄) + π̄

))
dt, (36)

where π̄ is the inflation target, ϕ is the sensitivity to inflation deviations and υ deter-
mines the persistence of the policy rule. For the normative analysis in Section 5 we
assume that the central bank implements the Ramsey-optimal policy.

3 Numerical solution and calibration

Numerical algorithm. We solve the model numerically using a new method, de-
scribed in Appendix C. It combines a discretization of the model using an upwind
finite-difference method similar to the one in Achdou et al. (2021) with a Newton al-
gorithm that computes non-linear transitional dynamics in a single loop. This can be
easily implemented using Dynare’s perfect foresight solver.18

Our solution approach is different from the one in Winberry (2018) or Ahn et al.
(2018). These papers analyze heterogeneous-agent models with aggregate shocks build-
ing on the seminal contribution by Reiter (2009). To this end, they linearize the model
around the deterministic steady state. Winberry (2018) illustrates how this can be
also implemented using Dynare, and Ahn et al. (2018) extend the methodology to
continuous-time problems. Here, instead, we compute the nonlinear transitional dy-
namics in the the sequence space, as Boppart et al. (2018) or Auclert et al. (2021).

18Notice that the variables of the model include the distribution ω(z), which is an infinite-dimensional
object. The finite-difference discretization turns this continuous variable into a finite dimensional
vector.
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Boppart et al. (2018) show how the perfect-foresight transitional dynamics to a (small)
MIT shock, such as the ones we compute here, coincide with the impulse responses ob-
tained by a first-order perturbation approach in the model with aggregate uncertainty.

Our method solves for the same approximate solution as the nonlinear version of
the sequence space Jacobian approach by Auclert et al. (2021). An important techni-
cal difference is that we solve simultaneously for all variables (prices, aggregates and
distributions) in a single loop without decomposing the model in blocks.

Calibration. Table 1 summarizes our calibration. We calibrate the parameters of
the heterogeneous firms block to match data on Spanish firms. The entrepreneur’s exit
rate (η) is set to 10 percent, in line with the average exit rate 2007-2020 in the data from
the Spanish Statistical Institute (INE).19 The other parameters of the heterogeneous-
firm block are disciplined by detailed firm-level panel data on the quasi-universe of
Spanish firms. We postpone the description of this data to the empirical Section 6,
with further details in Appendix A.1. The fraction of assets of exiting entrepreneurs
reinvested (ψ) is 0.1, so that new entrant’s account for 1 percent of the total capital
stock, in line with the data. The borrowing constraint parameter γ is 1.56, implying
that entrepreneurs can borrow up to 56% of their net worth, or 36% of their total
assets, which targets the aggregate debt to total assets ratio in the data. We assume
that individual productivity z follows an Ornstein-Uhlenbeck process in logs,20 with a
reflective lower (upper) barriers at some value close to 0 (very high value).21

d log(z) = −ςz log(z)dt+ σzdWt. (37)

We estimate this process using our firm panel data set, as explained in Appendix
A.5. The estimate for ςz corresponds to an annual persistence of 0.83, and the annual
volatility of the shock is estimated to be 0.73.

The conventional macro parameters are set to standard values. The rate of time
preference of the household ρh is 0.01, which targets an average real rate of return of
1 percent. The capital share α is set at 0.35 and the capital depreciation rate δ at

19Specifically, the data comes from the Directorio Central de Empresas, which is a dataset maintained
by INE, and it contains aggregate data on all firms operating in Spain, and its status (incumbent,
entrant or exiter). The dataset can be accessed here.

20By Ito’s lemma, this implies that z in levels follows the diffusion process dz = µ(z)dt+ σ(z)dWt,

where µ(z) = z
(
−ςz log z + σ2

2

)
and σ(z) = σzz.

21We truncate the process for z at 48. This corresponds to truncating the MRPK distribution at
the same level as in the data.
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Table 1: Calibration

Parameter Value Source/target

η Firms’ death rate 0.1 Average exit rate

ψ Fraction firms’ assets at entry 0.1 Capital of firms younger than 1 year / All firms capital

γ Borrowing constraint parameter 1.56 Debt / Total Assets firms

ςz Mean reverting parameter 0.19 Estimate based on firm level data

σz Volatility of the shock 0.73 Estimate based on firm level data

ρh Household’s discount factor 0.01 1%

α Capital share in production function 0.35 Gopinath et al. (2017)

δ Capital depreciation rate 0.06 Gopinath et al. (2017)

ζ Intertemporal elasticity of substitution HH 1 Log utility in consumption

ϑ Inverse Frisch Elasticity 1 Kaplan et al. (2018)

Υ Constant in disutility of labor 0.71 Normalization L = 1

ϕk Capital adjustment costs 8 VAR evidence Christiano et al. (2016)

ϵ Elasticity of substitution retail goods 10 Mark-up of 11%

θ Price adjustment costs 100 Slope of Phillips curve of 0.1 as in Kaplan et al. (2018)

π̄ Inflation target 0 Standard

ϕ Slope Taylor rule 1.5 Standard

υ Persistence Taylor rule 0.2 Standard

0.06, as in Gopinath et al. 2017. We assume log-utility in consumption (ζ = 1) and
the inverse Frisch elasticity ϑ is also set to 1, standard values in the literature. We set
the constant multiplying the disutility of labor Υ such that aggregate labor supply in
steady state is normalized to one. We assume capital adjustment costs are quadratic,
i.e. Ξ (ιt) = ϕk

2
(ιt − δ)2, and set ϕk to 8, such that the peak response of investment

to output after a monetary policy shock is around 2, in line with the VAR evidence of
Christiano et al. (2016).

Regarding the New Keynesian block, the elasticity of substitution of retail goods
ϵ is set to 10, so that the steady state mark-up is 1/(ϵ − 1) = 0.11. The Rotemberg
cost parameter θ is set to 100, so that the slope of the Phillips curve is ϵ/θ = 0.1 as in
Kaplan et al. (2018). The Taylor rule parameters take the following standard values:
π̄ = 0, ϕ = 1.5 and υ = 0.2.

The model generates the steady-state MRPK distribution shown by the orange line
in Figure 3. The dark blue bars show the MRPK distribution in the data, where a
firm’s MRPK is proxied by the product of a firm’s value added over capital and its
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capital share, as explained in Appendix A.2. Despite its simplicity, the model matches
this distribution well, thus predicting a plausible amount of capital misallocation.22

Note that matching this distribution is key, since our results exploit the heterogeneous
response of investment along the MRPK distribution.

Figure 1: MRPK distribution

Notes: The figure shows the steady state distribution of firms MRPK in the model (orange solid line) and compares
it to the data (histogram with blue bars). See Appendices A.1 and A.2 for more details on the measurement of firm
level MRPK in the data and robustness to differences in sectoral capital shares. We drop observations above an MRPK
of 0.82, which implies dropping firms in the 5% upper tail of the capital-weighted MRPK distribution. Note that, by
construction, the model cannot explain firms with an MRPK below the cost of capital (R = r+δ = 0.07 in steady state),
which we also drop in this figure.

4 Monetary policy and capital misallocation

In this Section, we analyze the links between monetary policy and capital misallocation.
To this end, we first delve into the theoretical mechanisms through which changes in
equilibrium prices affect misallocation, to then analyze the response of misallocation in
general equilibrium to a monetary policy and a time-preference shock. Understanding
these mechanisms is key to understand the optimal monetary policy explained in the
following Section 5.

22In Appendix A.2, we reproduce the MRPK distribution of Figure 3, but computing MRPK using
sectoral alphas. The fit of the model worsens only slightly in the direction of under-predicting the
measured misallocation.
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4.1 The capital misallocation channel of monetary policy

As Section 2 highlighted, misallocation and thus TFP is endogenous and evolves over
time. Misallocation is driven by the investment dynamics within the heterogeneous
input-goods firms block of the model, which in turn depend on the factor prices deter-
mined in general equilibrium. One can thus think about the heterogeneous firm sector
as a model block that translates (sequences of) prices into (a sequence of) TFP.

As discussed above, by equation (32) which we reproduce here, TFP depends on
the allocation of capital across entrepreneurs:

Zt =
(
Eωt(·) [z | z > z∗t ]

)α
, (38)

That is, TFP is the capital-weighted average of firms’ idiosyncratic productivity. TFP
thus depends on the mass of the net-worth distribution, ωt (·), above the productivity
threshold, z∗t (the shaded area in Figure 4.1). Entrepreneurs below the cut-off z∗ are
unconstrained, operate at their optimal size k(z) = 0, and lend their net worth to
constrained entrepreneurs above the cut-off. Equation (38) allows us to identify how
changes in equilibrium prices affect aggregate TFP in this economy (i) by changing the
net-worth distribution, ωt (·); and (ii) by changing the productivity-threshold z∗t . We
now explore these two margins in isolation.

We start analyzing the case in which the dynamics of TFP are driven purely by
changes in the net worth distribution, which happens when the cut-off z∗t is constant.
In this case, the the excess investment rate is key for the dynamics of TFP. We define
the excess investment rate as the ratio of profits over net worth

Φ̃t(z) ≡
Φt

qtat
= max

{
γφt
qt

(z − z∗t ) , 0

}
, (39)

where Φ̃t(z) is the return on equity that a firm with MRPK φtz makes in excess of the
cost of capital Rt. Since entrepreneurs reinvest all profits, Φ̃(z) also describes the speed
at which the net worth of an entrepreneur with productivity z grows in excess of the
growth rate of the unconstrained entrepreneurs with productivity z ≤ z∗t .23

23Φ̃(z) is also a measure of how constrained a firm is, since Φ̃(z) is the Lagrange multiplier of the
borrowing constraint in the firm’s maximization problem. From the first order conditions of the firm,
we get that MRPKt = Rt + qtλ

BC , where λBC is the multiplier on the borrowing constraint. Hence,
λBC = Φ̃t(z).
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Figure 2: The capital misallocation channel.

(a) Change in the net-worth
distribution.

(b) Shift in the productivity threshold.

Notes: The figure illustrates the net-worth share distribution ω (z) and the productivity-threshold z∗ (blue). The
light blue area is the initial mass of constrained firms. Panel (a) shows the impact of a change in the net-worth
distribution.Panel (b) shows the impact of an increase in the threshold (from blue dashed line to orange dashed line).
The new mass of constrained firms after the change is depicted by the shaded orange area in both panels.

Proposition 1. (TFP response to the slope). Conditional on a constant cutoff z∗,

the dynamics of Zt are fully determined by the slope of the excess investment rate, γφt

qt
.

An increase in γφt

qt
leads to an increase in the growth rate of TFP through changes in

the net worth distribution:

∂

∂
(
γφt

qt

) d logZt
dt

∣∣∣∣
z∗

=

´∞
z∗
z2ωt (z)´∞

z∗
zωt (z) dz

−
´∞
z∗
zωt (z)´∞

z∗
ωt (z) dz

> 0.

All the proofs in the Section can be found in Appendix B.8. This proposition
states that the slope γφt

qt
determines how, conditional on a constant cut-off z∗, the

net-worth share distribution moves, and hence in which direction TFP evolves. γφt

qt
is

a function of prices. If the slope increases, then high-productivity firms’ profitability
advantage widens, such that they grow faster than low-productivity firms, the net worth
distribution shifts rightwards, the allocation of capital improves, and TFP increases, as
represented in Panel a of Figure 4.1. Note that, in the model, high-productivity firms
have a high MRPK, which is given by φtz. So we can equivalently say that an increase
in the relative growth rate of high-MRPK firms improves TFP.

We turn next to the case when the distribution remains constant and the cut-off
changes in response to price changes. This happens in the limit of iid shocks, that is,
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the limit as ςz → ∞, as discussed in Itskhoki and Moll (2019). In this case the net worth
distribution ω (·) is constant, and the response of TFP growth depends exclusively on
the changes in the cutoff, according to the following proposition

Proposition 2. (TFP response to the cutoff). Conditional on a constant density
ω (·), the dynamics of Zt are fully determined by the threshold z∗t . The partial derivative
of TFP growth with respect to the growth rate of the threshold dz∗t

dt
is positive:

∂

∂
(
dz∗t
dt

) d logZt
dt

∣∣∣∣
ω(·)

=
αω(z∗t )

´∞
z∗t

(z − z∗t )ω (z) dz´∞
z∗t
ω (z) dz

´∞
z∗t
zω (z) dz

> 0.

This proposition implies that a change in prices that raises the threshold z∗t = Rt/φt

increases TFP. Panel (b) in Figure 4.1 illustrates how an increase in the threshold
decreases the share of constrained firms by crowding out low-productivity entrepreneurs.
The intuition is simple: low-MRPK constrained firms that were close to the threshold
become unconstrained and reduce their capital optimally to 0, which implies that these
entrepreneurs stop using their net worth for production, and instead they lend it to more
productive firms, decreasing misallocation. Changes in the productivity-threshold thus
capture changes in the share of constrained versus unconstrained firms. This mechanism
is different from the extensive margin: it is not meant to capture firm entry and exit,
which in our model is exogenously given by the probability of retiring η. Rather, it
captures the idea that previously constrained firms become unconstrained and vice
versa.

In general equilibrium these two margins simultaneously determine the evolution
of TFP. However, rather than being two independent mechanisms, they are tightly
connected through general equilibrium forces.

Corollary 1. An increase in the slope of the excess investment rate, γφt

qt
, is associated

to an increase in the growth rate of the threshold dz∗t
dt

, iff it is associated to a sufficiently
small increase in the growth rate of the ratio between households’ net savings and firms’

net worth: ∂
(
d
Dt
At

dt

)
/∂
(
γφt

qt

)
< ∆̂t where ∆̂t ≡ (E[z|z>z∗t ]−z∗t )(1−Ω(z∗t ))

ωt(z∗t )
> 0:

∂
(
dz∗t
dt

)
∂
(
γφt

qt

) > 0 ⇐⇒
∂

(
d
Dt
At

dt

)
∂ γφt

qt

< ∆̂t.
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That is, the two margins work in the same direction unless the supply of capital from
the household strongly counteracts the dynamics in the firm sector. This is intuitive:
an increase in the slope of the excess investment function γφt

qt
implies a rightwards

shift of the net worth share distribution. Ceteris paribus, this increases the demand
for capital and reduces its supply. Thus, the threshold z∗t has to increase to clear the
capital market, unless the household’s supply of capital simultaneously increases by a
lot.

This corollary allows us to characterize the capital misallocation channel of mon-
etary policy, that is, the response of misallocation and TFP to monetary policy. If
expansionary monetary policy shocks increases the slope γφt

qt
– which is the case in a

wide range of New Keynesian models – while not increasing the supply of capital by the
household relative to entrepreneurial net worth too much, then misallocation decreases
and TFP increases. To see if this is indeed the case, we now turn to general equilibrium
analysis.

4.2 Misallocation in general equilibrium

Households’ time preference shock without nominal rigidities. While our pri-
mary focus in this Section is on monetary policy shocks, it is instructive to start with
the response to a time-preference shock, that is a temporary fall in the household’s
discount factor ρh, abstracting for the moment from nominal rigidities, or equivalently
assuming strict inflation targeting (dashed orange line in Figure 4.2).24 This shock
causes a decrease of real interest rates and a hump shaped decline of TFP. The drop in
TFP results from a deterioration of the capital allocation due to the two interconnected
effects discussed above.

First, the share of net-worth held by high-MRPK firms decreases because their
profitability advantage over low-MRPK firms is squeezed, which lowers their relative
growth rate. Said differently, the slope of the excess investment rate γφt

qt
drops (panel i).

This decrease is largely brought about by the increase in capital prices (panel e), since
φt is largely unaffected by the shock, which barely moves wages and input good prices
(panels b and c). These price movements are similar to those in the complete-market
limit of our model, that is in the standard representative agent model (RA), as Figure

24For ease of comparison, we pick the time path for ρh such that the implied real rate coincides with
that resulting from a monetary policy shock analyzed next. This implies a drop of ρh of 2.3 b.p., and
a gradual return to the steady state level.
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13 in Appendix B.10 shows.25 The price dynamics that determine the evolution of the
net-worth share distribution are thus standard.

Second, some previously unconstrained low-MPRK firms increase their scale and
produce at full capacity, becoming constrained. Formally speaking, the cut-off z∗t =
rtqt+δqt−q̇t

φt
(eq. 10) falls. The drop in z∗t is the result of the drop in the real rate rt, which

is only partially compensated by the increase in capital prices qt. The intuition follows
directly from the corollary above, with inverted sign: the decrease in the slope of the
excess investment function implies a leftwards shift of the net worth share distribution
while, at the same time, the rise in the household’s patience increases the relative
supply of households’ savings. Thus, the threshold z∗t has to decrease to clear the
capital market.

Panel a of Figure 4 decomposes the evolution of TFP into the contributions of
the individual price changes. Changes in intermediate prices mt and wages wt barely
change TFP. The increase in capital prices qt raises TFP, but this effect is trumped by
the negative impact on TFP of the fall in real rates rt.

Monetary policy shock. Now we turn to the baseline model with nominal rigidi-
ties and analyze a monetary policy shock, that is, a 1 b.p. reduction in the nominal
rate (blue lines in Figure 4.2) when the central bank follows the Taylor rule in equation
(36). The natural rate, defined as the real interest rate in the counterfactual flexible
price economy, remains constant as changes in the Taylor rule do not affect real vari-
ables under flexible prices. The decline in nominal rates causes an increase in output
and inflation and a drop in the real rate (panels a, d, f) through the standard New
Keynesian transmission mechanism.26

Furthermore, TFP now increases (panel g). This is so, first, because the distribution
of net worth shifts towards more productive firms as the slope of the excess investment
rate γφt

qt
increases (panel i). This increase happens because now the changes in input-

good prices mt and wages wt cause φt to rise by more than the price of capital, qt
25The complete-market economy is the standard representative agent New Keynesian model with

capital. It represents a limit case of the baseline economy where either the borrowing constraint is
infinitely loose, so that the net-worth distribution becomes irrelevant and only the most productive
entrepreneur operates, or where the variance in entrepreneurial productivity z is 0. In this case, capital
allocation is efficient (no misallocation) and TFP is exogenous. Appendix B.9 compares the baseline
and complete-market models.

26As before, factor prices respond largely as in the complete-market RA model (see Figure 13 in the
appendix).
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Figure 3: Impulse responses.

Notes: The figure shows the deviations from steady state of the economy. The solid blue line is the response of the
baseline economy to an expansionary monetary policy shock of 1 basis point. The dashed orange line is the response of
the economy to a time preference shock in the absence of nominal rigidities, where the path for ρh is chosen so as to
reproduce the path of the real rate for the monetary policy shock. The yellow dotted line is the response to the same
shock with sticky prices.

(panel e).27 Second, the cut-off z∗t = rtqt+δqt−q̇t
φt

also increases (panel h), because the
increase in the price of capital qt overcompensates the decrease in the real rate rt and
the increase in φt. Contrary to the time-preference shock above, the monetary policy
shock increases the relative profitability of high-MRPK firms, such that the net worth
of constrained high-MRPK firms grows faster than the supply of capital from uncon-
strained entrepreneurs and households – which, unlike before, have no additional desire
to save. Hence, the threshold z∗t must thus increase to clear the capital market (see the
corollary above), which means that constrained low-MRPK firms reduce their scale and

27Input-good prices mt and wages wt affect φt in opposite directions, as the higher prices (panel
b) increases excess profits whereas higher wages (panel c) reduces them. However, the elasticity with
respect to both variables is different, being larger ( 1

α ) for prices than for wages ( 1−α
α ). As the increase

of wages and input-good prices is roughly of the same magnitude, the different elasticities explain why
φt increases.

24



Figure 4: Decomposing the effect of a monetary policy shock on TFP

Notes: The figure decomposes the effect of a monetary policy shock on TFP (bold blue line) into the effect of the
individual factor price changes. This is done by computing how TFP would have evolved if all prices but one would have
remained at steady state.

become unconstrained. We refer to the impact of monetary policy on misallocation as
the capital misallocation channel of monetary policy.

Panel b of Figure 4 shows how each factor price contributes to TFP. The increase
in input-good prices mt, which positively affects φt, has a positive effect on the excess
investment rate and a negative effect on the threshold. The latter effect prevails in
the short run, having a negative net effect of TFP, while the former prevails in the
long run, with a positive net effect. The opposite happens with the increase in wages
wt, but to a smaller scale. As for the time preference shock, the decrease in the real
rate rt contributes negatively to TFP, while the increase in capital prices qt contributes
positively, with the latter dominating in this case.

Households’ time preference shock with nominal rigidities. For complete-
ness we also report the response to the time preference shock with nominal rigidities
under a Taylor rule. The response (dotted yellow lines in Figure 4.2) is a combination of
the response to the time preference shock absent price rigidities, or equivalently under
strict inflation targeting, and the response to a negative monetary policy shock. To see
this, note that the central bank does not reduce nominal rate as fast as under strict
inflation targeting, and hence the real interest rate exceeds the natural rate (compare
the dotted yellow and the dashed red line in panel d). The Taylor rule thus leads to
a contractionary temporary deviation from the strict inflation targeting policy. As a
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result TFP drops even more than with flexible prices.28

Robustness and empirical support. Note that the responses of capital misal-
location and TFP described above directly depend on the relative response of factor
prices, which we can only solve for numerically in general equilibrium. So the direction
of the response may depend on parameters. We show in Appendix B.11 that our results
are robust to a wide range of parameters.

One may wonder if the positive response of TFP through a reduction in misallocation
to a monetary expansion is empirically plausible. It has been widely documented that
expansionary monetary policy shocks indeed raise TFP (see Evans, 1992; Christiano
et al., 2005; Garga and Singh, 2021; Jordà et al., 2020; Moran and Queralto, 2018;
Meier and Reinelt, 2020 or Baqaee et al., 2021). The peak effect on TFP predicted by
our model (0.87 p.p. increase in TFP to a 1 p.p. decrease in rates) falls within the range
0.4-1.7 p.p. of medium-run peak responses of TFP to monetary policy shocks estimated
by those papers. Furthermore, their estimated responses are also hump-shaped over the
medium-run. The model is thus consistent with this evidence.

In Section 6 we go a step further and provide direct evidence that misallocation
indeed contributes to the rise in TFP by confirming two testable implications of our
theory: (i) that after a expansionary monetary policy shock high-MRPK firms increase
their investment relatively more; and (ii) that overall misallocation decreases. Further-
more, we show that the quantitative response of the model is in the ballpark of that
estimates. Taken together these results suggest that the capital misallocation channel
may indeed contribute to the rise in TFP, and can hence complement the alternative
mechanisms proposed by this literature such as R&D, hysteresis effects, or markup
heterogeneity.

Relation to the misallocation literature. Our results resolve the apparent
tension between the literature showing how monetary policy shocks affect TFP on the
one hand, and the literature finding that low real rates may fuel misallocation on the
other hand (e.g. Gopinath et al., 2017 or Asriyan et al., 2021).29 We show that there
is no such a conflict: our model delivers both an increase in TFP in response to an
expansionary monetary policy shock and a decline in TFP in response to a negative
demand shock when prices are flexible. The difference in the behavior of misallocation

28The responses to a permanent time preference shock are qualitatively similar. See Appendix B.9.
29They find that misallocation increases and TFP decreases in response to a decline in real interest

rates in flexible-price economies.
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is due to the different natural rate dynamics: though in response to both shocks the
real rate drops, the natural rate falls only for the demand shock, remaining constant
for the monetary policy shock.

5 Optimal monetary policy

Having analyzed the interaction of monetary policy and capital misallocation, we now
turn to optimal policy.

5.1 Central bank objective and numerical approach

Ramsey problem. We assume that the central bank sets its policy instrument – the
nominal interest rate it – such as to maximize household utility under full commitment.
That is, the central bank solves the following Ramsey problem:

max
{ω(z),w,r,q,φ,R,K,A,L,C,D,Z,E[z|z>z∗t ],Ω,z∗,ι,π,m,m̃,i,Y,T}t≥0

E0

ˆ ∞

0

e−ρ
htu(Ct, Lt)dt (40)

subject to the all the private equilibrium conditions derived above and listed in Ap-
pendix B.7 and the initial conditions {ω0(z), K0, D0, A0}. Relative to the standard New
Keynesian model – i.e. the complete market version of our model – the problem of the
central bank is richer by one dimension: the central bank understands that its policy
affects TFP through the capital misallocation channel, and has to account for that.

Algorithm. This additional richness also makes the problem harder to solve com-
putationally. The central bank’s controls include the net-worth distribution ωt(z), as
the central bank internalizes the impact of its decisions on it. Notice that the den-
sity ωt(z) not only depends on time, but also on individual productivity. This poses
a challenge when solving optimal monetary policy, as we need to compute the first
order conditions (FOCs) with respect to this infinite-dimensional object. There are a
number of proposals in the literature to deal with this problem. Bhandari et al. (2021)
make the continuous cross-sectional distribution finite-dimensional by assuming that
there are N agents instead of a continuum. They then derive standard FOCs for the
planner. In order to cope with the large dimensionality of their problem, they employ
a perturbation technique. Le Grand et al. (2022) employ the finite-memory algorithm
proposed by Ragot (2019). It requires changing the original problem such that, after
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K periods, the state of each agent is reset. This way the cross-sectional distribution
becomes finite-dimensional. Nuño and Thomas (2022), Bigio and Sannikov (2021),
Smirnov (2022) and Dávila and Schaab (2022) deal with the full infinite-dimensional
planner’s problem. This implies that the continuous Kolmogorov forward (KF) and the
Hamilton-Jacobi-Bellman (HJB) equations are constraints faced by the central bank.
They derive the planner’s FOCs using calculus of variations, thus expanding the original
problem to also include the Lagrange multipliers, which in this case are also infinite-
dimensional. These papers solve the resulting differential equation system using the
upwind finite-difference method of Achdou et al. (2021).

Here we propose a new algorithm, detailed in Appendix D. Instead of determining
the FOCs for the planner’s continuous space problem, we first discretize the planner’s
objective and constraints (the private equilibrium conditions) using finite differences.
This transforms the original infinite-dimensional problem into a high-dimensional prob-
lem, in which the value function and the state density are replaced by large vectors with
a dimensionality equal to the number of grid points (200 in our application) used to
approximate the individual state space. In this discretized model the dynamics of the
(now finite-dimensional) distribution ωt are given by

(
I−∆tAT

t

)
ωt = ωt−1, where ∆t

is the time step and At is a matrix whose entries depend nonlinearly and in closed form
on the idiosyncratic and aggregate variables in period t.30

Second, we find the planner’s FOCs by symbolic differentiation. This delivers a
large-dimensional system of difference equations. Third, we find the Ramsey steady
state by solving this system at steady state. To do so, we compute the steady state
of the model conditional on the steady-state level of the policy instrument with a
conventional iterative method, and then use this function to find the Ramsey steady
state using the Newton method. Fourth, we solve the system of difference equations
non-linearly in the sequence space using the Newton method, as already described in
Section 3 and Appendix C. The symbolic differentiation and the two applications of
the Newton algorithm can conveniently be automated using several available software
packages. In our case, we employ Dynare, but the approach is also compatible with
the nonlinear sequence space Jacobian toolbox. This algorithm can be employed to
compute optimal policies in a large class of heterogeneous agent models. Compared to
other techniques, it stands out for being easy to implement. In appendix D we compare

30Technically, this matrix results from the discretization of the infinitesimal generator of the id-
iosyncratic states.
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our method conceptually to the ones cited above. We also present a proposition showing
that our algorithm delivers the same results as computing the FOCs by hand using
calculus of variations and then discretizing the model, as the time step gets smaller.
Finally we apply our the algorithm to solve the model in Nuño and Thomas (2022) in
order to illustrate its generality, demonstrating that results coincide.

5.2 Optimal Ramsey policy

Steady state. Let us focus first on the steady state of the Ramsey problem. It is
well known that in the standard (complete-market) New Keynesian economy without
steady state distortions inflation is zero in the Ramsey steady state. Due to capital
misallocation, our baseline (incomplete-market) economy does not feature steady state
efficiency. Yet, inflation is still zero in the steady state of the Ramsey problem.31 This
result mirrors a similar result from the textbook New Keynesian model with a distorted
steady state (Woodford, 2003; Gali, 2008). Though the long-run Phillips curve allows
monetary policy to affect misallocation in the long run through positive trend inflation,
the benefits of this policy are compensated for by the cost of the anticipation of this
policy.

Time-0 optimal policy. We turn next to the deterministic dynamics under the
Ramsey optimal plan. We solve for the Ramsey plan when the initial state of the
economy coincides with the steady state under the optimal policy, i.e., that with zero
inflation. The Ramsey planner faces no pre-commitments. This is commonly referred
to as the “time-0 optimal policy” (Woodford, 2003).

We compare our baseline incomplete-market economy with a complete-market econ-
omy. The Ramsey plan in the model with complete markets is time-consistent. Hence,
inflation and the rest of variables remain constant at their steady state values (see the
dashed red lines in Figure 5). Market incompleteness, however, introduces a new source
of time inconsistency, inducing the central bank to temporally deviate from the zero-
inflation policy. The solid blue lines in Figure 5 show how the central bank engineers
a sizable surprise monetary expansion, increasing inflation (panel a). The resulting
dynamics are precisely those caused by an expansionary monetary policy shock, which
were described in detail in Section 4.2. As a result TFP increases (panel b). The central
bank thus engineers a monetary expansion, tolerating a temporary increase in inflation,

31This is a numerical result that holds at close to machine precision for a wide range of parameters.
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Figure 5: Time 0 optimal monetary policy.

Notes: The figure shows the deviations from steady state of the economy when the planner solves the Ramsey problem
without pre-commitments and in the absence of shocks. The baseline economy is the solid blue line, and the complete
market economy the dashed orange line. The dotted yellow line and the purple dashed line repeat the same exercise in
the absence of the subsidy that undoes the markup distortion.

in order to achieve a persistent rise in TFP, brought about by a more efficient allocation
of capital.

It is well known that the Ramsey policy in the complete market economy with a
steady-state mark-up distortion also features inflationary time inconsistency. Compar-
ing the optimal policy above with the optimal policy when there is no subsidy to correct
for the mark-up distortion reveals that the time inconsistency problem caused by the
incomplete market distortion is much larger: the optimal inflation level due to market
incompleteness is more than six times higher than that due to the mark-up (dashed
purple line). We hence conclude that the time inconsistency problem is not only large
in absolute terms (with an average inflation of 3% during the first year), but also dwarfs
the one resulting form markups in the standard New Keynesian model.

The desire of the central bank to redistribute resources towards high-MRPK en-
trepreneurs is reminiscent of the case with optimal fiscal policy analyzed by Itskhoki and
Moll (2019). They find that optimal fiscal policy in economies starting at below steady-
state net-worth levels initially redistributes from households towards entrepreneurs in
order to speed up net worth accumulation, and thus increase TFP growth. In our
case, and given the lack of fiscal instruments, it is the central bank who engineers this
redistribution through an expansion in aggregate demand.
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5.3 Timeless optimal policy response

Next, we analyze the optimal policy response when an unexpected shock hits the econ-
omy that was previously in its zero-inflation steady state. In this case, we adopt a
“timeless perspective” (Woodford, 2003). Timelessly optimal Ramsey policy implies
that the central bank sticks to pre-commitments, implementing the policy that it would
have chosen to implement if it had been optimizing from a time period far in the past.32

This allows us to study systematic changes in monetary policy in response to shocks
under the, ex-ante optimal, time-invariant state-contingent policy rule.33

Households’ time preference shock. We analyze the optimal response to a time
preference shock from a timeless perspective. Figure 6 shows that the optimal inflation
response in the baseline economy (blue solid line) mimics that under complete markets
(orange dashed line): the central bank stabilizes inflation at its steady state value of
zero (panel a). This is what is usally known as “divine coincidence” (Blanchard and
Gali, 2007): the real rate follows the natural rate (panel c) and output is at its natural
level (panel b).34 This result has important implications: despite the fact that the
central bank can use monetary policy to cushion the impact of shocks by exploiting the
misallocation channel of monetary policy, it chooses not to do so and sticks instead to
strict price stability. As we show in Appendix B.12, this result applies also to other
shocks, such as a TFP or a financial shock.

In order to implement the optimal policy in response to the time-preference shock,
the central bank should lower the real and nominal rates. However, in the baseline
model with incomplete markets, this requires that the central bank acts more forcefully
than under complete markets (panel c). The reason is that the original demand shock
leads to a negative ’supply shock’ through its impact on aggregate TFP (panel d), which
depresses output and natural rates relative to the complete market case, as discussed
in the previous Section.

Zero lower bound. The fact that the central bank responds more persistently to
the demand shock under the optimal policy has important implications when the zero
lower bound constrains its room for maneuver. Figure 7 displays the optimal response

32The Lagrange multipliers associated to forward-looking equations in the planner’s FOCs in this
case are initially set to their steady state values.

33As discussed in Section 3, building on the argument by Boppart et al. (2018) one can reinterpret
the timeless response to MIT shocks as a first-order approximation to the response under uncertainty.

34The natural level corresponds to the case with flexible prices (yellow and purple dashed lines).
The divine coincidence holds only in a approximate sense, but the deviation is negligibly small.
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Figure 6: Optimal monetary policy response to a household discount factor shock.

Notes: The figure shows the optimal response from a timeless perspective (in deviations from steady state) to a 1 p.p.
decrease in the rate of time preference of the household ρh that is mean reverting with a yearly persistence of 0.8. The
baseline economy is the solid blue line, and the complete market economy the dashed orange line.The figure also shows
the paths of the variables under strict inflation targeting (yellow and purple lines), though they are barely visible since
they are overlaid by the optimal policy paths.

from a timeless perspective to a large negative demand shock that drives the natural
rate below the zero lower bound (ZLB). The optimal policy under complete markets, as
shown by Eggertsson et al. (2003), is to adopt a “low for longer” strategy: The nominal
rate (dotted yellow line, panel a) should remain at the ZLB for a longer period than it
would in the absence of the ZLB (dashed orange line).

In the baseline economy with incomplete markets, optimal policy is also character-
ized by a low for longer strategy (dotted light blue line, panel a). However, the lift-off
date is now delayed relative to the complete markets model. We call this a “low for
even longer” policy. The reason is simple. As discussed above, natural rates fall more
persistently in the case with incomplete markets, and so do nominal rates under the
optimal policy without the ZLB (solid blue line). To compensate for the inability to
move rates into negative territory, the central bank commits to stay low for even longer.
Incomplete markets make this commitment even more important, since otherwise not
only output and inflation, but also TFP would fall more. To see this, we compare the
baseline (light blue dotted line) with a policy that sets the rate equal to the maximum
of its optimal value in the absence of the ZLB and zero (green dotted line) and verify
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Figure 7: Optimal monetary policy response to a demand shock with the zero lower
bound.

Notes: The figure shows the optimal response from a timeless perspective (in deviations from steady state) to a 4 p.p.
decrease in the rate of time preference of the household ρh that is mean reverting with a yearly persistence of 0.8. The
baseline economy without the zero lower bound is the solid blue line, and the complete market economy without the
zero lower bound is the dashed orange line. The dotted light blue line is the optimal response in the baseline economy
with the zero lower bound, while the dotted green line is the response under a policy that sets the rate equal to the
maximum of its optimal value in the absence of the ZLB and zero. The yellow dotted line is the optimal response in the
complete market economy with the zero lower bound.

that TFP declines by more in the latter case.

6 Testable implications

A key prediction of our theory is that an expansionary monetary policy shock increases
TFP by reducing misallocation. While the main focus of our paper is conceptual,
we conclude by evaluating this testable implication. As already discussed in Section
4, the literature has repeatedly confirmed that expansionary policy shocks increase
TFP. In this section, we show that a reduction in capital misallocation may contribute
to this increase. First, we use firm level data to test the mechanism suggested by
the model: after an expansionary monetary policy shock, high-MRPK firms increase
their investment relatively more. Second, with a simple model-derived measure of
misallocation, we quantify the impact of monetary policy shocks on misallocation and
TFP in the data. In both cases we compare the results to the model predictions.

Data. For our empirical analysis we combine granular Spanish firm-level panel data
with Jarociński and Karadi monetary policy shocks. We use yearly balance-sheet and
cash-flow data from the quasi-universe of Spanish firms from 2000 to 2016 from the
Central de Balances Integrada. The main advantage of this dataset is that it covers the
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quasi-universe of Spanish firms, including not only large firms with access to stock and
bond markets, but also medium and small firms more reliant on bank credit and internal
financing. This contrasts with most papers in this literature, which use data from
publicly traded firms (e.g. Compustat). These are generally large firms with access to
the equity market, which can potentially behave very differently from the rest of firms
in the economy, as documented for example by Caglio et al. (2021). Appendix A.1
details the data definition and the cleaning process and reports descriptive statistics.
Our key variable of interest is firm’s MRPK, which we proxy by value added over
capital following the literature (see for instance Bau and Matray, 2023). Appendix
A.2 explains the rationale for this using proxy in more detail and explains that all the
empirical results in this paper are robust to sectoral differences in capital shares.

The monetary policy shock is taken from Jarociński and Karadi (2020), who use
sign restrictions to decompose unexpected high frequency movements of interest rates
around policy announcements into an information surprise and a monetary policy sur-
prise component. We use the latter component, and we aggregate these shocks to yearly
frequency following the methodology employed by Ottonello and Winberry (2020). Ap-
pendix A.3 provides more details on the identification and aggregation of the monetary
policy shock.

Firm level responses. The model predicts that TFP increases in response to a
monetary shock, because the capital stock of firms with a higher MRPK grows relatively
more. This happens both because constrained high-MRPK firms’ net worth increases in
relative terms, which thus invest relatively more, and because low-MRPK firms’ optimal
size is reduced, which thus invest less. To illustrate this, we simulate a monetary policy
shock in the model and calculate the average response of firms’ capital stock as a
function of their initial MRPK. The model predicts that this response is near-linearly
increasing in the logarithm of pre-shock MRPK, as the dashed orange line in Figure 8
illustrates.

To test this prediction in the Spanish data, we estimate the following relationship,
which is linear in log MRPK, as suggested by the model:

log kj,t−log kj,t−1 = β0+β1 log (MRPKj,t−1)+β2 log (MRPKj,t−1) εt+β3εt+Γ
′Yt−1+γs+uj,t.

(41)

where kj,t is the tangible capital of an individual firm j at time t, MRPKj,t−1 is lagged
MRPK, and εt is the monetary policy shock. While these controls would be sufficient
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Figure 8: Response of investment to an
expansionary monetary policy shock as a
function of initial MRPK

Notes: The figure displays the average effect of an 1 p.p.
expansionary monetary policy shock on the growth rate
of the capital stock in the year after the shock in p.p.. –
100 ∗ (log kj,1 − log kj,0) – as a function of the firms’ log
MRPK before the shock log(MRPKj,0). For the model
(orange), the relationship is calculated analytically. See
Appendix B.13 for more detail. Estimating the regres-
sion (41) on simulated data would recover a linear ap-
proximation of it. We compare the model prediction to
the estimated relationship (41) (black). The shaded ar-
eas mark the 90, 95 and 99% confidence intervals.

Table 2: Response of firm-level invest-
ment to an expansionary monetary pol-
icy shock

(1) (2)
∆logkj,t−1,t ∆logkj,t−1,t

εtlog(MRPKj,t−1) 0.0470∗∗∗ 0.0286∗∗∗

(0.02) (0.01)
εt 0.0605∗∗∗

(0.02)

Obs 3, 692, 188 3, 692, 188
R2 0.01 0.02
γst No Yes
γs Yes No

Notes: Column (1) reports the estimated differential ef-
fect (β2) and average effect (β3) from regression (41),
that is, including sector fixed effects, aggregate con-
trols (lagged GDP growth, inflation and unemployment).
Standard errors clustered at the sector-year level. Col-
umn (2) reports the differential effect (β2) estimated in-
cluding sector-year fixed effects.

in the context of the model, we add further controls to account for non-modelled forces.
Yt−1 are macroeconomic controls to account for the business cycle, that include GDP
growth, inflation and unemployment and γs is a vector of sector fixed effects, which
control for potential sector-specific confounders. Finally, uj,t is the residual.

The main coefficient of interest is β2, which is the empirical counterpart to the slope
of the orange function in Figure 8: a positive value indicates that high-MRPK firms
increase their investment more than low-MRPK firms after an expansionary monetary
policy surprise. Table 2, column 1 shows that after a 1 p.p. expansionary monetary
policy shock, a firm with an MRPK that is 1% higher than that of another firm increases
its capital stock by 0.0470 p.p. more.

The coefficient β3 corresponds to the intercept in Figure 8. Since the mean and stan-
dard deviation of log (MRPKj,t) are -0.87 and 1.4, these estimates document both a
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substantially positive average effect of monetary policy on investment,35 and – more im-
portantly – an economically significant amount of heterogeneity in the firms’ responses.
Being positive, these estimates thus support the models qualitative predictions. What
is more, as Figure 8 shows, they are also quantitatively close to the model.

We perform a battery of robustness tests, by subsequently enriching the baseline
specification in (41). First, we add sector-time fixed effects. This accounts for sec-
toral differences in capital shares, as further explained in Appendix A.2, and for other
potential year-sector specific confounders. While more robust, the average effect of
the monetary policy shock is absorbed in this specification. The estimate of the slope
remains significant and of similar order of magnitude (see column 2 in Table 2).

Furthermore, we add firm-level fixed effects, firm-level controls, including measures
of size, leverage and liquidity, introduce aggregate controls interacted with log(MRPK),
and also interact the firm-level controls with the monetary policy shock. In all cases the
coefficient β2 remains positive and statistically significant, and of similar magnitude.
We also demean the MRPK at the firm level, to ensure that the results are not driven
by permanent heterogeneity in responsiveness across firms or systematic bias in our
empirical proxy for the MRPK – in the spirit of Ottonello and Winberry (2020) – and
we still find a positive and significant coefficient. Furthermore, these results are not
driven by the smaller firms in our sample: if we restrict the analysis to large firms, the
coefficient is still positive and significant, and even of greater magnitude. All of these
results are reported in Appendix A.4.

In the model, the share of capital held by high-MRPK firms increases in response
to a monetary expansion because the monetary expansion increases the profits of high-
MRPK firms disproportionately, which are then invested. To test for this particular
mechanism, in column (11) of Table 4 in Appendix A.4 we estimate the baseline re-
gression (41) with sector-year fixed effects, but with the log change in profits on the
left-hand side. We find the coefficient to be positive and significant, providing further
support for the mechanism presented in the paper.

A follow-up empirical paper by Albrizio et al. (2023) explores these results further.
They show that debt holdings increase relatively more for high-MRPK firms, which
would also be in line with our model predictions. Furthermore, they document that

35If we assume a capital depreciation rate δ of 10% as in Ottonello and Winberry (2020), our
estimates imply that after a 1 p.p. expansionary monetary policy shock, average investment increases
19%. This is very close to the 20% found by these authors.
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common proxies for tighter financial frictions, such as firm age, leverage, or liquidity,
matter for investment sensitivity to monetary policy only as long as firms have a high-
MRPK.

Aggregate productivity. In the model, the individual investment decisions ag-
gregate up to changes in misallocation, such that aggregate TFP increases after an
expansionary monetary policy shock. To test this prediction quantitatively, we need an
empirical measure of TFP that abstracts from any changes in TFP that are brought
about by anything but changes in the allocation of capital. For this purpose we define
dynamic weighted average MRPK, WAMt,τ , as

WAMt,τ ≡
J∑
j=0

MRPKj
t

kj,t+τ
Kt+τ

,

where j indexes the firm, J is the number of firms, and Kt+τ is the aggregate capital.
We approximate the growth rate of WAMt,τ from time t to t+ τ by the log difference
∆ logWAMt,τ ≡ logWAMt,τ − logWAMt,0. ∆WAMt,τ tells us how much the economy-
wide average MRPK has changed from period t to t + τ only due to changes in the
distribution of capital across firms, holding constant the MRPK of the firm at the
initial level. As we show in Appendix A.6, in our model ∆ logWAMt,τ is approximately
proportional to the growth rate of TFP Zt:

∆ logWAMt,τ ≈ 1/α∆ logZt,τ

Through the lens of the model, our empirical measure ∆ logWAMt,τ can hence be inter-
preted as a measure of changes in TFP that are brought about purely through changes
in the allocation of capital, muting any other channels through which a monetary policy
shock may simultaneously affect standard measures of TFP.

We use this variable as dependent variable in the following simple local projection:

∆ logWAMt−1,τ,s = αs,τ + βτεt + ut,τ,s for τ = 1, 2, 3, 4.

We estimate this regression at the sector level s to account for potential sectoral differ-
ences. This also accounts for differences in capital shares across sectors. αs,τ denotes
horizon specific sector fixed effects, εt is the monetary policy shock, and ut,τ,s is the
residual. The regression coefficient βτ thus tells us the cumulative change in our mea-
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Figure 9: Response of average MRPK to an expansionary monetary policy shock.

Notes: The Figure shows the estimated impulse response function after a 1 p.p. expansionary monetary policy shock of
∆logWAMt,τ on the data (black line), and the shaded area marks the 90%, 95% and 99% confidence intervals of the
data estimates. It also shows response after a 1 p.p. expansionary monetary policy shock in the model of ∆logWAMt,τ

(orange broken line), and the log changes of model TFP (scaled by 1/α) (blue dashed line).

sure of capital misallocation at different horizons τ after a 1 p.p. monetary policy easing
surprise.

Figure 6 reports our estimates for βτ at different horizons τ (black line), with con-
fidence intervals shaded in gray. Standard error are clustered at sector level. A 1 p.p.
expansionary monetary policy shock causes an increase of the dynamic weighted av-
erage MRPK of 3 p.p. at impact, and of 7 p.p. at peak after 3 years. The effect is
significant throughout 4 years at the 95% level.36

The dashed-dotted orange line in Figure 6 shows that the model produces a similar
path for the dynamic weighted average MRPK, albeit of smaller magnitude.37 The
model explains about half of the observed increase in ∆ logWAMt,τ in the data. The
model can hence be interpreted as being conservative with regards to the strength of
the capital misallocation channel. The peak increase in WAMt,τ of almost 2.5 p.p.
predicted by the model (dashed-dotted orange line) corresponds to an increase of TFP
of 0.87 p.p. (dashed blue line).

36Albrizio et al. (2023), using the sector-level variance of MRPK (see Hsieh and Klenow 2009) as a
measure of misallocation for Spanish data, also find that expansionary monetary policy shocks decrease
misallocation.

37The model counterpart is constructed by feeding a 1 p.p. monetary policy easing surprise into the
model as a temporary deviation from the Taylor Rule, and then computing ∆WAMt,τ .

38



7 Conclusions

This paper introduces a tractable model with heterogeneous firms, financial frictions,
and nominal rigidities in order to understand the link between monetary policy and cap-
ital misallocation, and its policy implications. We calibrate this economy using Spanish
firm-level data, and show that it can reproduce fairly well the MRPK distribution in
the data. Our model predicts that an expansionary monetary policy shock improves
the allocation of capital and thus raises TFP. We call this effect the capital misalloca-
tion channel. We present empirical evidence supporting this prediction: expansionary
policy induces high-MRPK firms to increase their investment relatively more than low-
MRPK firms. We analyze optimal monetary policy for a benevolent central bank with
commitment. The central bank has a strong time-inconsistent incentive to exploit the
capital misallocation channel, engineering a temporary economic expansion to increase
TFP at the cost of some inflation. When commitment to a timeless policy rules out
this time-inconsistent policy, we find that the optimal policy is price stability.

The paper also makes a methodological contribution. It introduces a new algorithm
to compute optimal policies in heterogeneous-agent models. The algorithm leverages
the numerical advantages of continuous time and will allow researchers to solve optimal
policy in heterogeneous-agent models in an efficient and simple way using Dynare.

The model presented in this paper abstracts from several relevant mechanisms driv-
ing firm dynamics, such as endogenous default, size-varying capital constraints, frictions
in the labor market, or decreasing returns to scale, among many others. This allows
us to provide a clear understanding of the forces linking monetary policy with capital
misallocation, as well as highlighting the similarities and differences with the standard
New Keynesian model. A natural extension would be to add more of these features to
study their impact on the optimal conduct of monetary policy.
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Online appendix

A Empirical Appendix

A.1 Firm level data

The empirical exercise relies on annual firm balance-sheet data from the Central de
Balances Integrada database (Integrated Central Balance Sheet Data Office Survey).
We use an unbalanced panel of firms from 1999 to 2016, since these are the years
for which the monetary policy shocks are available. Being a detailed administrative
dataset, the main advantage is that it covers the quasi-universe of Spanish firms (see
Almunia et al., 2018 for further details on the representativeness of this dataset). We
use for our analysis only high quality observations, as defined by the Integrated Central
Balance Sheet Data Office.

Our main variable of interest, firm’s marginal revenue product of capital (MRPK),
is proxied by the log of the ratio of value added over tangible capital.38 We drop firms
in the 5% upper tail of the capital-weighted MRPK distribution, so as to focus on
firms holding a non-negligible capital share. Variables are deflated using industry price
levels to preserve the firms’ price-level changes and consider a revenue-based measure
of MRPK (Foster et al., 2008). The capital-weighted MRPK distribution in the data
is shown in blue bars in Figure 3.

Our dependent variable, the investment rate (or capital growth), is defined as the
difference of firm’s tangible capital, in logarithm, between periods t and t− 1. We also
use other firm-level information as controls in the robustness Section below. Profits
are computed as net ordinary profits, defined as value added minus personnel costs,
net financial revenue and depreciation. Leverage is computed as total debt (short-term
plus long-term debt) divided by total assets, and it is trimmed below 0 and over 10.
Net financial assets are constructed as the log difference between financial assets and
financial liabilities, where financial assets include short-term financial investment, trade
receivables, inventories and cash holdings; and financial liabilities include short-term
debt, trade payables and long-term debt. We trim this variable below at -10 and above
at 10. This variable controls for firms’ savings, following Armenter and Hnatkovska
(2017). We proxy for size using the logarithm of total assets. Real sales growth is

38Implicitly, this is restricts our sample to observations with positive value added.
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defined as the log-difference of sales in two consecutive years, the previous and the
current one.39 We use the production deflator for value added, sales, financial assets
and liabilities and the investment price deflator for capital and total assets. Profits are
also deflated using the investment price deflator (see more on this in Appendix A.4).
The variables used in the regressions are winsorized at 0.5%. Descriptive statistics are
reported in Table 3.

Table 3: Descriptive statistics

mean sd p5 p95

Capital growth (1 period) -0.00 0.29 -0.30 0.49
Net operating profit growth (1 period) -0.01 1.11 -1.89 1.84
MRPK (logs) -0.87 1.39 -3.57 0.73
MRPK (levels) 0.77 0.66 0.03 2.07
Total Assets 6.02 1.57 3.56 8.64
Leverage 0.31 0.37 0.00 0.97
Net financial Assets 0.07 0.50 -0.71 0.68
Sales growth 0.13 1.41 -0.50 0.82

Observations 5184233

Notes: The table shows the mean (column 1), standard deviation (column 2), 5th and 95th percentile value (column 3
and 4 respectively) of the main variables used in the calibration and empirical analysis. MRPK is shown in logs and in
levels. The table also displays total assets (logs), leverage, net financial assets; and the log difference of the capital
stock (capital growth), output (sales growth) and profits (profit growth). The number of observations are those for
which the variable MRPK is available.

A.2 Proxying MRPK and accounting for sectoral differences in

the capital share

A firm’s MRPK is no directly observable. However, in a Cobb-Douglas production
framework, such as the one presented in Section 2, a firm’s MRPK is proportional to
its average revenue product of capital (ARPK):

MRPKt ≡ αkα−1
t l1−at ∝ ARPKt ≡ yt/kt = kα−1

t l1−at

We thus use the easily measurable ARPK as an empirical measure for the unob-
servable MRPK, following the literature (see for instance Bau and Matray, 2023). To

39Both sales growth and capital growth are winsorized at 0.5%.
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account for the use of intermediate inputs, which we don’t model explicitly, we use
value added (sales minus intermediate inputs) instead of sales.

However, capital shares α may differ across sectors. This would imply that the
ARPK is no longer a valid proxy for the MRPK in cross sectoral comparisons. In the
following we explain that all our results are robust to this concern. We use our MRPK
proxy on four occasions. We discuss each of them in turn.

Steady state MRPK distribution In Section 3 we show that the model predicts a
steady state MRPK distribution that is in line with the MRPK distribution implied by
the data, assuming a uniform capital share for all sectors. Here we relax this assumption
and allow for sectoral difference in the capital shares. Following Hsieh and Klenow
(2009) and Gopinath et al. (2017), we take the sectoral capital shares of a relatively
undistorted economy such as the United States. As Figure 10 shows, the fit of the model
worsens only slightly in the direction of underpredicting the measured misallocation.
The baseline calibration can hence be considered conservative.

Figure 10: MRPK distribution

Firm level capital growth In Section 6 we show that high MRPK firms respond
more strongly to monetary policy shocks. The first robustness we perform (column 2
of Table 2) includes sector-time fixed effects γst. These soak up any differences between
the MRPK and the ARPK that sectoral differences in factor shares could introduce.
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To show this, we reproduce our specification here, acknowledging explicitly that we use
the ARPK as a proxy for the MRPK and adding a sector index

log kj,t − log kj,t−1 = β0 + β1 log (ARPKj,s,t−1) + β2 log (ARPKj,s,t−1) εt + γs,t + uj,t,

Using the above relationship between the MRPK and the ARPK ARPKj,s,t−1 =
MRPKj,t−1

αs
, where αs denotes the sectoral capital share we can rewrite this equation as

log kj,t − log kj,t−1 = β0 + β1 log

(
MRPKj,t−1

αs

)
+ β2 log

(
MRPKj,t−1

αs

)
εt + γs,t + uj,t

= β0 + β1 log (MRPKj,t−1) + β2 log (MRPKj,t−1) εt

+ {β1 log (αs) + β2 log (αs) εt}+ γs,t + uj,t.

Thus, the sector time-fixed effects γst absorb the differences in sectoral capital shares
(the term in curly brackets) and the coefficients β1 (β2) can be interpreted as the
association of MRPK (the interaction of MRPK with the monetary policy shock) with
capital growth, as we do in the main text. 40

Furthermore, note that in Appendix A.2 we include a specification with firm-level
fixed effects and MRPK demeaned at the firm level (following Ottonello and Winberry
(2020)), which accounts for differences in the capital shares even at the firm level.

Dynamic weighted average MRPK In Section 6 we show that the log difference
of dynamic weighted average MRPK (∆ logWAMt−1,τ,s) increases in response to a
monetary policy shock. This variable is constructed by aggregating our MPRK-proxy
at the sectoral level. Since we consider its log difference, sectoral differences in capital
share αs wash out. Thus, sectoral differences in capital shares do not affect our results
or their interpretation.

Productivity process In Appendix A.5 we use our MRPK proxy to estimate the
productivity process. To account for potential sectoral differences in capital shares,
here we redo the estimation adding sector fixed effects (which absorb sectoral capital
shares since the specification is in logs) or accounting for US sectoral capital shares
as previously explained. The estimates change only marginally from ρz = 0.83 and

40Following the same reasoning, even time variation in the sectoral capital shares is accounted for.
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σ = 0.73 to ρz = 0.77 and σ = 0.71, and ρz = 0.80 and σ = 0.72 respectively.41

A.3 Monetary policy shocks

We use the monetary policy shocks constructed by Jarociński and Karadi (2020). The
key idea behind their identification strategy is that movements of interest rates and
stock markets within a narrow window around monetary policy announcements can help
disentangle monetary policy shocks from information surprises. While an unexpected
policy tightening raises interest rates and reduces stock prices, a positive central bank
information shock (i.e. unexpected positive assessment of the economic outlook) raises
both. Their identification of monetary policy relies hence on sign restrictions: an
unexpected monetary policy tightening raises interest rates and reduces stock prices,
while an unanticipated positive information shock increases both. Each surprise change
in interest rates is hence decomposed into a combination of ’central bank information
shocks ’ and ’monetary policy shocks ’. We use the latter, as provided by the authors
with the published paper.

We use their monetary policy shocks at monthly frequency. Since our firm-level
panel is at annual frequency, we aggregate the monthly monetary policy shocks following
the scheme of Ottonello and Winberry (2020). However, instead of aggregating daily
shocks into quarterly series, we apply a monthly-to-yearly transformation. This scheme
accounts for the fact that firms have less time to react to shocks happening at the end
of the year then to shocks happening earlier on. In particular, a monthly shock enters
both the current year and the following year’s annual shock, with the split between the
current and the next year depending on the timing of the monthly shock within the
current year.42 Concretely, we construct the monetary policy shock as

εt =
∑
m

ωpast(m)εm,t−1+
∑
m

ωcurrent(m)εm,t ωpast(m) =
m− 1

12
, ωcurrent(m) =

12− (m− 1)

12

where εt is the aggregated annual monetary policy shock in year t, and εm,t is the
high-frequency shock in month m = 1, . . . 12 of year t .See (Albrizio et al., 2023) for a
formal derivation of this weighting scheme. Note that we multiply the original shocks

41Even firm level fixed effects do not change the estimates much.
42For instance, a high-frequency surprise happening in January is entirely attributed to the current

year, while the one occurring in December mainly contributes to the following year’s annual shock.
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by (-1), so that positive monetary policy shocks corresponds to expansionary monetary
policy. Figure 11 shows the time series of the shock.

Figure 11: Monetary policy shocks at annual frequency.
Source: Jarociński and Karadi (2020) and own calculations.

A.4 Robustness of the firm level regression

In this Section we perform several robustness of our finding that high-MRPK firms’
investment responds more to monetary shocks. We consider variations of the main
empirical specification explained in the main text, equation (41), which we repeat here
expanded to include the robustness specifications we perform below

log kj,t−log kj,t−1 = β0+β1 log (MRPKj,t−1)+β2 log (MRPKj,t−1) εt+λ
′Zj,t−1+γst+κj+uj,t, (42)

where Zj,t−1 includes a vector of lagged firm-level controls (total assets, sales growth,
leverage, capital growth and net short term financial assets), and in some specification
it also includes their interaction with the monetary policy shock; γst are sector-year
fixed effects; and κj are firm-level fixed effects.

Column (1) in Table 4 reproduces the results of Column 2 of Table 2 of the main
text. It does not include firm-level nor aggregate controls, and it only includes sector-
time fixed effects. Column (2) includes firm fixed-effects, and Column (3) also adds
firm-level controls (the lag of total assets, sales growth, leverage, capital growth and
net short term financial assets). The results remain positive, significant and of similar
magnitude. Column (4) reports results for the same specifications as Column (3),
but adding the interaction of log (MRPKj,t−1) with lagged GDP growth, to rule out
any heterogeneity in response to business cycle movements. Column (5) adds to the
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specification of column (4) the interaction of the monetary policy shocks with the
firm level controls. Results remain significant and quantitatively similar. Column (6)
runs the same specification of Column (5), just replacing the main variable of interest
log (MRPKj,t−1) with its demeaned value at the firm level, to make sure that results
are not driven by permanent heterogeneity in MRPK levels, in the spirit of Ottonello
and Winberry, 2020. Our results also survive to this strict specification.

One of the advantages of our dataset is that it also includes small and privately held
firms. But precisely because of this, it could be the case that small firms are the ones
driving these results and one may wonder if the same empirical pattern holds for large
firms. To address this concern, we replicate the analysis of our baseline specification
with sector-year fixed effects, Column (1), but keeping only firms below the 90th per-
centile of employment (Column 7), and keeping only firms above the 90th percentile
(Column 8). The coefficient on the slope of MRPK is positive, significant, and even
quantitatively larger for larger firms. The 90th percentile of employment in the Spanish
distribution of firms is relatively low (15 employees), so we repeat the same regression
but keeping only firms with at least 100 employees in Column (9), and reach the same
conclusion. Since our panel is highly unbalanced, we run our baseline specification,
but only for firms that we observe for at least for 6 consecutive years (from t − 1 to
t+4) (Column 10), hence restricting the sample as in the aggregate analysis performed
in Section 4.2. The coefficient is nearly twice as large as that of Column (1). Sum-
ming up, all these exercises point at the robustness of the empirical result of a higher
heterogeneous response of investment for high-MRPK firms to a monetary policy shock.

Finally, we want to test directly whether high-MRPK firms’ profits are indeed in-
creasing, in line with the theoretical predictions. We use as data counterpart net or-
dinary net profits deflated by the capital investment deflator.43 We estimate the same
equation as that of Column 1 of Table 4, but with the log change in profits on the
left-hand side. The results are depicted in Column (11). As predicted by the model,
the coefficient is positive and significant, providing further support for the mechanism
presented.

43Results are robust to deflate profits using the production deflator rather than the capital investment
deflator
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A.5 Estimating the process for idiosyncratic productivity z

We assume that individual productivity z in logs follows an Ornstein-Uhlenbeck process

d log(z) = −ςz log(z)dt+ σzdWt.

To estimate this continuous time process on discrete data, we approximate it by an
AR(1) process using an Euler-Maruyama approximation

log(zjt ) = ρz log(z
j
t−1) + εt, εt ∼ N(0, σz

√
∆t),

where ρz ≈ 1− ςz∆t ≈ exp (−ςz∆t).
In the model, firm level productivity z is proportional to firm level MRPK

MRPKt(z) = zφt

Using this we can rewrite the discretized process for z as

log(MRPKt(z
j
t )/φt) = ρz log(MRPKt−1(z

j
t−1)/φt−1) + εt, εt ∼ N(0, σz)

log(MRPKt(z
j
t )) = ρz log(MRPKt−1(z

j
t−1)) + f(φt, φt−1) + εt,

We estimate this equation using OLS on our panel data specified above, capturing
the term f(φt, φt−1) by using year fixed effects. We find ρz = 0.83, and the standard
deviation of the shock is σ = 0.73. This estimate is robust to including sector fixed
effects to account for sectoral differences in capital shares (see Appendix A.2). As the
data frequency is annual, ∆t = 1, we back out the implied to continuous time parameter
ςz = − log(ρz) = 0.189.

A.6 Derivation of the approximate correspondence of △Zt and

△WAMt,s

We define kt(z) =
´∞
0
k (z, a) gt(z, a)da, and at(z) =

´∞
0
agt(z, a)da. Manipulating the

definition of TFP (32) by subsequently using the definitions of Ω(z∗t ), ωt(z) and the
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linearity of kt(z) in at(z) when z > z∗t , we get

Z
1/α
t =

´∞
z∗t
zωt(z)dz

(1− Ω(z∗t ))
dz

=

ˆ ∞

z∗t

z
ωt(z)´∞

z∗t
ωt (z) dz

dz

=

ˆ ∞

z∗t

z
at(z)/At´∞

z∗t
at (z) /Atdz

dz

=

ˆ ∞

0

z
kt(z)´∞

0
kt (z) dz

dz

=

ˆ ∞

0

z
kt(z)

Kt

dz.

Now consider two points in time t and t+τ , where t < t+τ . Since z follows a persistent
process we can approximate a firm’s j productivity level at t+ τ by its productivity at
t, zj,t ≈ zj,t+τ . This approximation holds exactly in the limit as the process slows down
(ςz → 1 and σz → 0) or as the time difference shrinks (τ → 0). We can thus write

Z
1/α
t+τ ≈

ˆ 1

0

zj,t
kj,t+τ
Kt+τ

dj

where kj,t+τ denotes the period t+ τ capital of an active firm with initial productivity
level zj,t in period t. Using the definition of the MRPK,

MRPKt(zj,t) ≡ φtzj,t

we arrive at

Z
1/α
t+τ ≈ 1

φt

ˆ 1

0

MRPKt(zj,t)
kj,t+τ
Kt+τ

dj.

To understand how a monetary policy shock affects Z1/α
t , we are interested in the evolu-

tion of
(
logZ1/α

t+τ − logZ1/α
t

)
= 1
α
(logZt+τ − logZt) where t now denotes the period of the

shock arrival. Using the above relationship and definingWAMt,τ ≡
´ 1
0
MRPKt(zj,t)

kj,t+τ

Kt+τ
dj
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we can write:

1

α
(logZt+τ − logZt) ≈ log

ˆ 1

0

MRPKt(zj,t)
kj,t+τ
Kt+τ

dj − log
ˆ 1

0

MRPKt(zj,t)
kj,t
Kt

dj

= logWAMt,τ − logWAMt,0

The empirical counterpart of
´ 1

0
MRPKt(zj,t)

kj,t+τ

Kt+τ
dj is the expression in the main

text
∑J

0 MRPKj
t
kjt+τ

Kt+τ
. In the main text we report both the 1

α
(logZt+τ − logZt) and

logWAMt,τ − logWAMt,0.44 The approximation is indeed good, especially for the first
years, as we show in Figure 6.

44WAMt,τ can be computed analytically given the transitional dynamics of equilibrium prices and
z∗t .
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B Further details on the model

B.1 Entrepreneur’s intertemporal problem

The Hamilton-Jacobi-Bellman (HJB) equation of the entrepreneur is given by

rtVt(z, a) = max
dt≥0

dt + sat (z, a, d)
∂V

∂a
+ µ(z)

∂V

∂z
+
σ2(z)

2

∂2V

∂z2
+ η (qtat − Vt(z, a)) +

∂V

∂t
.

We guess and verify a value function of the form Vt(z, a) = κt (z) qta. The first order
condition is

κt (z)− 1 = λd and min{λd, dt} =0,

where λd = 0 if κt(z) = 1. If κt(z) > 1 ∀z, t, then dt = 0 and the firm does not pay
dividends until it closes down. If this is the case, then the value of κt (z) can be obtained
from

(rt + η)κt (z) qt =

ηqt + (γmax {ztφt −Rt, 0}+Rt − δqt)κt (z) + µ(z)qt
∂κt
∂z

+
σ2(z)

2
qt
∂2κt
∂z2

+
∂ (qtκt)

∂t
.

(43)

Lemma. κt (z) > 1 ∀z, t
Proof. The drift of the entrepreneur’s capital holdings is

sat =
1

qt
[(γmax {ztφt −Rt, 0}+Rt − δqt] ≥

Rt − δqt
qt

which is expected to hold with strict inequality eventually if ∃ P (zt ≥ z∗t ) > 0 (which
is satisfied in equilibrium since z is unbounded), and hence

E0at = E0a0e
´ t
0 s

a
udu > a0e

´ t
0

Rs−δqs
qs

ds. (44)

The value function is then

κt0 (z) qt0at0 = Vt0(z, at0)

= Et0
ˆ ∞

0
e
−
´ t
t0
(rs+η)ds (dt + ηqtat) dt
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≥ Et0
ˆ ∞

0
e
−
´ t
t0
(rs+η)dsηqtatdt = Et0

ˆ ∞

0
e

−
´ t
t0


rs︷ ︸︸ ︷

Rs − δqs + q̇s
qs

+η

ds
ηqtatdt

= Et0
ˆ ∞

0
e
−
´ t
t0

(
Rs−δqs

qs
+η

)
ds−log

qt
qt0 ηqtatdt = Et0

ˆ ∞

0
e
−
´ t
t0

(
Rs−δqs

qs
+η

)
ds
ηqt0atdt

> Et0
ˆ ∞

0
e
−
´ t
t0

(
Rs−δqs

qs
+η

)
ds
ηqt0at0e

´ t
0

Rs−δqs
qs

ds
dt =

ˆ ∞

0
e−ηtηqt0at0dt = qt0at0 ,

where in the first equality we have employed the linear expression of the value function,
in the second equation (5), in the third the fact that dividends are non-negative, in the
fourth the definition of the real rate (17) and in the last line the inequality (44). Hence
κt0 (z) > 1 for any t0.

B.2 Household’s problem

We can rewrite the household’s problem as

Wt = max
Ct,Lt,Dt,BN

t ,S
N
t

E0

ˆ ∞

0

e−ρ
h
t t

(
C1−ζ
t

1− ζ
−Υ

L1+ϑ
t

1 + ϑ

)
dt. (45)

s.t. Ḋt =
[
(Rt − δqt)Dt + wtLt − Ct − SNt +Πt

]
/qt, (46)

ḂN
t = SNt + (it − πt)B

N
t , (47)

where SNt is the investment into nominal bonds.
The Hamiltonian is

H =

(
C1−ζ
t

1− ζ
−Υ

L1+ϑ
t

1 + ϑ

)
+ϱt

[(
(Rt − δqt)Dt + wtLt − Ct − SNt + (qtιt − ιt − Φ (ιt))Kt +Πt

)
/qt
]
+ ηt

[
SNt + (it − πt)B

N
t

]
The first order conditions are

C−ζ
t − ϱt/qt = 0 (48)
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−ΥLϑt + ϱtwt/qt = 0 (49)

−ϱt/qt + ηt = 0 (50)

ϱ̇t = ρht ϱt − ϱt (Rt − δqt) /qt (51)

η̇t = ρht ηt − ηt [(it − πt)] (52)

(48) and (49) combine to the optimality condition for labor

wt =
Lϑt
C−η
t

,

(48) can be rewritten as

ϱt = C -η
t qt

Now take derivative with respect to time

ϱ̇t = −ηC -η-1
t Ċtqt + C -η

t q̇t

and plug this into (51) and rearrange to get the first Euler equation

Ċt
Ct

=

Rt−δqt+q̇t
qt

− ρht

η

(50) can be rewritten as
ηt = ϱt/qt

Now take derivative with respect to time

η̇t =
ϱ̇tqt − ϱtq̇

q2t

Use these two expressions and the definition of ϱ̇t in (52) to get the second Euler
equation

Ċt
Ct

=
(it − πt)− ρht

η
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Combining the two Euler equations, we get the Fisher equation

Rt − δqt + q̇t
qt

= (it − πt)

Finally using the definition of rt ≡ Rt−δqt+q̇t
qt

we can rewrite the first Euler equation and
the Fisher equation as in the main text.

B.3 New Keynesian Philips curve

The proof is similar to that of Lemma 1 in Kaplan et al. (2018). The Hamilton-Jacobi-
Bellman (HJB) equation of the retailer’s problem is

rtV
r
t (p) = max

π

(
p− pyt (1− τ)

Pt

)(
p

Pt

)−ε

Yt −
θ

2
π2Yt + πp

∂V r

∂p
+
∂V r

∂t
,

where where V r
t (p) is the real value of a retailer with price p. The first order and

envelope conditions for the retailer are

θπYt = p
∂V r

∂p
,

(r − π)
∂V r

∂p
=

(
p

Pt

)−ε
Yt
Pt

− ε

(
p− pyt (1− τ)

Pt

)(
p

Pt

)−ε−1
Yt
Pt

+ πp
∂2V r

∂p2
+
∂2V r

∂t∂p
.

In a symmetric equilibrium we will have p = P , and hence

∂V r

∂p
=

θπYt
p

, (53)

(r − π)
∂V r

∂p
=

Yt
p

− ε

(
p− pyt (1− τ)

p

)
Yt
p

+ πp
∂2V r

∂p2
+
∂2V r

∂t∂p
.

Deriving (53) with respect to time gives

πp
∂2V r

∂p2
+
∂2V r

∂t∂p
=
θπẎ

p
+
θπ̇Y

p
− θπ2Y

p
,

and substituting into the envelope condition and dividing by θY
p

we obtain(
r − Ẏ

Y

)
π =

1

θ

(
1− ε

(
1− pyt (1− τ)

p

))
+ π̇.
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Finally, rearranging we obtain the New Keynesian Phillips curve(
r − Ẏ

Y

)
π =

ε

θ

(
1− ε

ε
+ m̃

)
+ π̇.

The total profit of retailers, net of the lump-sum tax, which is transferred to the
households lump sum, is

Πt = (1−mt)Yt −
θ

2
π2
t Yt. (54)

B.4 Capital producers’ problem

The problem of the capital producer is

Wt = max
ιt,Kt

E0

ˆ ∞

0

e−
´ t
0 rsds (qtιt − ιt − Ξ (ιt))Ktdt. (55)

K̇t = (ιt − δ)Kt, (56)

We construct the Hamiltonian

H = (qtιt − ιt − Ξ (ιt))Kt + λt (ιt − δ)Kt

with first-order conditions

(qt − 1− Ξ′ (ιt)) + λt = 0 (57)

(qtιt − ιt − Ξ (ιt)) + λt (ιt − δ) = rtλt − λ̇t (58)

Taking the time derivative of equation (57)

λ̇t = − (q̇t − Ξ′′ (ιt) ι̇t)

which, combined with (58), yields

(qtιt − ιt − Ξ (ιt))− (qt − 1− Ξ′ (ιt)) (ιt − δ − rt) = (q̇t − Ξ′′ (ιt) ι̇t)

Rearranging we get
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rt = (ιt − δ) +
q̇t − Ξ′′ (ιt) ι̇t
qt − 1− Ξ′ (ιt)

− qtιt − ιt − Ξ (ιt)

qt − 1− Ξ′ (ιt)
.

B.5 Distribution

The joint distribution of net worth and productivity is given by the Kolmogorov Forward
equation

∂gt(z, a)

∂t
= − ∂

∂a
[gt(z, a)st(z)a]−

∂

∂z
[gt(z, a)µ(z)]+

1

2

∂2

∂z2
[gt(z, a)σ

2(z)]−ηgt(z, a)+η/ψgt(z, a/ψ),
(59)

where 1/ψgt(z, a/ψ) is the distribution of entry firms.
To characterize the law of motion of net-worth shares, defined as ωt(z) = 1

At

´∞
0
agt(z, a)da,

first we take the derivative of ωt(z) wrt time

∂ωt(z)

∂t
= − Ȧt

A2
t

ˆ ∞

0

agt(z, a)da+
1

At

ˆ ∞

0

a
∂gt(z, a)

∂t
da. (60)

Next, we plug in the derivative of gt(z, a) wrt time from equation(59) into equation
(60),

∂ωt(z)

∂t
= − Ȧt

A2
t

ˆ ∞

0

agt(z, a)da+
1

At

ˆ ∞

0

a

(
− ∂

∂a
[gt(z, a)st(z)a]

)
da

− ∂

∂z
µ(z)

1

At

ˆ ∞

0

agt(z, a)da+
1

2

∂2

∂z2
σ2(z)

1

At

ˆ ∞

0

agt(z, a)da

− 1

At

ˆ ∞

0

ηagt(z, a)da+
1

At

ˆ ∞

0

ηa/ψgt(z, a/ψ)da.

Using integration by parts and the definition of net worth shares, we obtain the second
order partial differential equation that characterizes the law of motion of net-worth
shares,

∂ωt(z)

∂t
=

[
st(z)−

Ȧt
At

− (1− ψ)η

]
ωt(z)−

∂

∂z
µ(z)ωt(z) +

1

2

∂2

∂z2
σ2(z)ωt(z). (61)

The stationary distribution is therefore given by the following second order partial
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differential equation,

0 = (s(z)− (1− ψ)η)ω(z)− ∂

∂z
µ(z)ω(z) +

1

2

∂2

∂z2
σ2(z)ω(z). (62)

B.6 Market clearing and aggregation

Define the cumulative function of net-worth shares as

Ωt(z) =

ˆ z

0

ωt(z)dz. (63)

Using the optimal choice for kt from equation (7), we obtain

Kt =

ˆ
kt(z, a)dGt(z, a) =

ˆ ∞

z∗t

ˆ
γa

1

At
gt(z, a)dadzAt = γ(1− Ω(z∗t ))At. (64)

By combining equations (27), (28) and (64), and solving for At,we obtain

At =
Dt

γ(1− Ω(z∗t ))− 1
, (65)

Labor market clearing implies

Lt =

ˆ ∞

0

lt(z, a)dGt(z, a). (66)

Define the following auxiliary variable,

Xt ≡
ˆ ∞

z∗t

zωt(z)dz = E [z | z > z∗t ] (1− Ω(z∗t )). (67)

Using labor demand from (8) , Xt and using the definition of φt, we obtain

Lt =

ˆ ∞

0

(
φt
αmt

) 1
1−α

ztγatdGt(z, a) =

(
φt
αmt

) 1
1−α

γAtXt. (68)

Plugging in (8) into production function (1), and using again the definition of shares,
we obtain

Yt =

ˆ
ztφt
αmt

γa︸ ︷︷ ︸
yt(z,a)

dGt(z, a) =
φt
αmt

XtγAt = ZtA
α
t Lt

1−α, (69)
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where in the last equality we have used equation (68), and we have defined

Zt = (γXt)
α . (70)

Aggregate profits of retailers are given by

ΦAgg
t =

ˆ
γmax {ztφt −Rt, 0} atdGt(z, a) = [φtXt −Rt (1− Ω(z∗))] γAt. (71)

We can also write the aggregate production in terms of physical capital,

Yt = ZtK
α
t Lt

1−α, (72)

where the TFP term Zt is defined as

Zt =

(
Xt

(1− Ω(z∗t ))

)α
= (E [z | z > z∗t ])

α . (73)

Z
1/a
t (1− Ω(z∗t )) = (Xt) = (E [z | z > z∗t ])

α . (74)

Aggregating the budget constraint of all input good firms, using the linearity of
savings policy (11) and using (65), we obtain

Ȧt =

ˆ
ȧdG(z, a, t)− η

ˆ
(1− ψ)atdG(z, a, t) =

=

ˆ ∞

0

1

qt
(γmax {ztφt −Rt, 0}+Rt − δqt − qt(1− ψ)η)atdG(z, a),

Dividing by At both sides of this equation, using the definition of net worth shares and
the fact that these integrate up to one, we obtain

Ȧt
At

=
1

qt
(γφtXt −Rtγ(1− Ω(z∗t )) +Rt − δqt − qt(1− ψ)η). (75)

Using the definition of Xt, and substituting φt using equation (68), we can simplify
equation (75) as

Ȧt
At

=
1

qt
(1− Ω(z∗t ))γ(αmtZtLt

1−α ((1− Ω(z∗t ))γAt)
α−1 −Rt) +Rt − δqt − qt(1− ψ)η).

(76)
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Using (64) and (65) we can replace (1 − Ω(z∗t ))γAt by Kt, which delivers equation
(35).

Finally, we can obtain factor prices

wt =(1− α)mtZtAt
αLt

−α (77)

Rt =αmtZtA
α−1
t Lt

1−α z∗t
γX t

(78)

where wages come from substituting the definition of φt into equation (68); and interest
rates come from plugging in the wage expression (77) into the cut-off rule (10) and using
equation (65). We could equivalently write equation (78) in terms of real rate of return
rt :

rt =
1

qt

(
αmtZtA

α−1
t Lt

1−α z∗t
γX t

)
− δ +

q̇

qt
(79)

We can easily get these equations in terms of capital instead of net worth by simply
using equation (64), i.e. At =

Kt

γ(1−Ω(z∗t ))
, and using that E [z | z > z∗t ] =

Xt

(1−Ω(z∗t ))
=´∞

z∗t
zωt(z)dz

(1−Ω(z∗t ))
(see equation (70) and (73)).

B.7 Full set of equations

The competitive equilibrium economy is described by the following 22 equations, for the
22 variables {ω(z), w, r, q, φ,R,K,A, L,C,D,Z,E [z | z > z∗t ] ,Ω, z

∗, ι, π,m, m̃, i, Y, T}.
Remember that µ(z) = z

(
−ςz log z + σ2

2

)
and σ(z) = σzz, and that government bonds

are in zero net supply (BN
t = 0, hence SNt = 0). Except from the last equation (Taylor

rule), the other 21 equations are the constraints of the Ramsey problem described in
Section 2.8.
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∂ωt (z)

∂t
=

(
st(z)− (1− ψ)η − Ȧt

At

)
ωt (z)−

∂

∂z
[µ(z)ωt (z)] +

1

2

∂2

∂z2
[
σ2(z)ωt (z)

]
where st(z) ≡

1

qt
(γmax {ztφt −Rt, 0}+Rt − δqt)

Ωt(z
∗) =

ˆ z∗

0

ωt (z) dz

φt = α

(
(1− α)

wtwt

)(1−α)/α

m
1
α
t

m̃t = mt(1− τ)

wt = (1− α)mtZtKt
αLt

−α

Rt = αmtZtK
α−1
t Lt

1−α z∗t
E [z | z > z∗t ]

Ȧt
At

=
1

qt

[
γ(1− Ω(z∗t ))

(
αmtZtK

α−1
t Lt

1−α −Rt

)
+Rt − δqt − qt(1− ψ)η)

]
Kt = At +Dt

K̇t = (ιt − δ)Kt

At =
Dt

γ(1− Ω(z∗t ))− 1

Zt = (E [z | z > z∗t ])
α

E [z | z > z∗t ] =

´∞
z∗t
zωt(z)dz

(1− Ω(z∗t ))

Ċt
Ct

=
rt − ρht
η

wt =
ΥLϑt
C−η
t

Ḋt = [(Rt − δqt)Dt + wtLt − Ct + Tt] /qt

rt = it − πt

rt =
Rt − δqt + q̇t

qt

(qt − 1− Φ′ (ιt)) (rt − (ιt − δ)) = q̇t − Φ′′ (ιt) ι̇t − (qtιt − ιt − Φ (ιt))(
rt −

Ẏt
Yt

)
πt =

ε

θ
(m̃t −m∗) + π̇t, m∗ =

ε− 1

ε
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Yt = ZtK
α
t Lt

1−α

Tt = (1−mt)Yt −
θ

2
π2
t Yt + qt(1− ψ)ηAt +

[
ιtqt − ιt −

ϕk

2
(ιt − δ)2

]
Kt

di = −υ
(
it −

(
ρht + ϕ (πt − π̄) + π̄

))
dt.
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B.8 Proofs of subsection 4.2

TFP is given by equation (32)

Zt =

(´∞
z∗t
zωt (z) dz´∞

z∗t
ωt (z) dz

)α

.

We compute the growth rate of TFP

1

Zt

dZt
dt

=
d logZt
dt

= α

[
d

dt

(
log

ˆ ∞

z∗t

zωt (z) dz

)
− d

dt

(
log

ˆ ∞

z∗t

ωt (z) dz

)]

= α

[´∞
z∗t
z ∂ωt(z)

∂t
dz − z∗t ωt(z

∗
t )
dz∗t
dt´∞

z∗t
zωt (z) dz

+
−
´∞
z∗t

∂ωt(z)
∂t

dz + ωt(z
∗
t )
dz∗t
dt´∞

z∗t
ωt (z) dz

]
,

where the dynamics of the density are

∂ωt (z)

∂t
=

γφtqt max {(z − z∗) , 0}︸ ︷︷ ︸
≡Φ̃t(z)

+
Rt − δqt

qt
− Ȧt
At

− (1− ψ)η︸ ︷︷ ︸
≡Ξ̃t

ωt(z)
+ ςz

∂

∂z
(log(z)ωt(z)) +

σ2
z

2

∂2

∂z2
ωt(z).

From there we can analyze two limit cases.

Constant cutoff First, we analyze the case in which the cut-off remains approxi-
mately constant. In this case, the growth rate is

1

Zt

dZt
dt

∣∣∣∣
z∗

=

´∞
z∗
z ∂ωt(z)

∂t
dz´∞

z∗
zωt (z) dz

−
´∞
z∗

∂ωt(z)
∂t

dz´∞
z∗
ωt (z) dz

.

We now show that, in this case, (i) prices only influence TFP though changes in the
slope of the excess investment rate, γφt

qt
; and (ii) that this response is positive. The

derivative of the TFP growth rate with respect to a price or a function of prices xt is

∂

∂xt

d logZt
dt

∣∣∣∣
z∗

=

´∞
z∗
z ∂ω̇t(z)

∂xt
dz´∞

z∗
zωt (z) dz

−
´∞
z∗

∂ω̇t(z)
∂xt

dz´∞
z∗
ωt (z) dz

,
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where

∂ω̇t (z)

∂xt

∣∣∣∣
z∗

=
∂

∂xt

(
Φ̃t(z) + Ξ̃t

)∣∣∣∣
z∗
ω (z) ,

given the definitions of Φ̃t(z) and Ξ̃t above. Then we have:

∂

∂xt

d logZt
dt

∣∣∣∣
z∗

=

´∞
z∗
z ∂Φ̃(z)

∂xt
ωt (z) dz´∞

z∗
zωt (z) dz

−
´∞
z∗

∂Φ̃(z)
∂xt

ωt (z) dz´∞
z∗
ωt (z) dz

+
∂Ξ̃t
∂xt

(´∞
z∗
zωt (z) dz´∞

z∗
zωt (z) dz

−
´∞
z∗
ωt (z) dz´∞

z∗
ωt (z) dz

)
︸ ︷︷ ︸

0

.

This expression shows how only the excess investment rate Φ̃(z) matters to understand
the impact of changes in prices on the growth rate of TFP. Conditional on z∗, price
changes affect the excess investment rate by affecting its slope γφt

qt
. So the effect of a

shock on TFP growth is determined by its effect on γφt

qt
. This proves claim (i).

To prove that an increase in the slope γφt

qt
increases TFP growth, we compute

∂

∂
(
γφt

qt

) d logZt
dt

∣∣∣∣
z∗

=

´∞
z∗
z ∂Φ̃t(z)

∂
(

γφt
qt

)ωt (z) dz
´∞
z∗
zωt (z) dz

−

´∞
z∗

∂Φ̃t(z)

∂
(

γφt
qt

)ωt (z) dz
´∞
z∗
ωt (z) dz

=

´∞
z∗
z (z − z∗)ωt (z) dz´∞
z∗
zωt (z) dz

−
´∞
z∗
z (z − z∗)ωt (z) dz´∞

z∗
ωt (z) dz

,

To uncover the sign, we analyze the term
´∞
z∗

(z − z∗) zωt (z)´∞
z∗
zωt (z) dz

−
´∞
z∗

(z − z∗)ωt (z)´∞
z∗
ωt (z) dz

=

´∞
z∗
z2ωt (z)´∞

z∗
zωt (z) dz

−
´∞
z∗
zωt (z)´∞

z∗
ωt (z) dz

. (80)

We define ω̄t(z) ≡ ωt(z)´∞
z∗ ωt(z)dz

Iz>z∗ and ω̃t(z) ≡ zωt(z)´∞
z∗ ωt(z)zdz

Iz>z∗ . These are continuous
probability density functions over the domain [z∗,∞), as they are non-negative and
sum up to 1. They satisfy the monotone likelihood ratio condition as

I (z) =
ω̃t(z)

ω̄t(z)
= z

´∞
z∗
zωt (z) dz´∞

z∗
ωt (z) dz
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is non decreasing. This implies that function ω̃t(z) dominates ω̄t(z) first-order stochas-
tically. Hence
´∞
z∗
zωt (z)´∞

z∗t
ωt (z) dz

= Eω̄t(z) [z] =

ˆ ∞

z∗
zω̄t(z)zdz <

ˆ ∞

z∗t

zω̃t (z) dz = Eω̃t(z) [z] =

´∞
z∗
z2ωt (z)´∞

z∗t
zωt (z) dz

.

Therefore, equation (80) is positive. An increase in the slope of the excess investment
rate, γφt

qt
, thus increases TFP growth, which proves claim (ii):

∂

∂
(
γφt

qt

)
.

d logZt
dt

∣∣∣∣
z∗

=

´∞
z∗
z2ωt (z)´∞

z∗t
zωt (z) dz

−
´∞
z∗
zωt (z)´∞

z∗t
ωt (z) dz

> 0.

Iid shocks Next, we consider the limit of iid shocks, that is, the limit as ςz → ∞. In
this case, as discussed in Itskhoki and Moll (2019), the distribution ω (z) is constant
and the growth rate of TFP simplifies to

1

Zt

dZt
dt

= αω(z∗t )

´∞
z∗t

(z − z∗t )ω (z) dz´∞
z∗t
ω (z) dz

´∞
z∗t
zω (z) dz

dz∗t
dt
.

Notice that αω(z∗t )
´∞
z∗t

(z−z∗t )ω(z)dz´∞
z∗t
ω(z)dz

´∞
z∗t
zω(z)dz

> 0 for any value of the cut-off. In this case, the

growth rate of TFP depends linearly with the growth rate of the cut-off: if the later
increases, so does the former.

Corollary The market clearing condition for capital (29) can be rewritten as

Dt

At
= γ(

ˆ ∞

z∗t

ωt (x) dx)− 1

Take the time derivative on both sides and then manipulate the RHS

∂Dt

At

∂t
=

∂γ
´∞
z∗t
ωt (x) dx

∂t
=

ˆ ∞

z∗t

∂ωt (z)

∂t
dz − ωt(z

∗
t )
∂z∗t
∂t

.
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Now take the derivative with respect to the slope γφt

qt
, drawing on the above in the

second line, and finally rearrange.(
∂2Dt

At

∂t∂ γφt

qt

)
= ∂

(ˆ ∞

z∗t

∂ωt (z)

∂t
dz − ωt(z

∗
t )
∂z∗t
∂t

)
/∂

(
γφt
qt

)

=

ˆ ∞

z∗t

∂Φ̃t(z)

∂
(
γφt

qt

)ωt (z) dz − ωt(z
∗
t )
∂
(
∂z∗t
∂t

)
∂
(
γφt

qt

) .
=

ˆ ∞

z∗t

(z − z∗t )ωt (z) dz − ωt(z
∗
t )
∂
(
∂z∗t
∂t

)
∂
(
γφt

qt

) .
= (E [z | z > z∗t ]− z∗t ) (1− Ω(z∗t ))− ωt(z

∗
t )
∂
(
∂z∗t
∂t

)
∂
(
γφt

qt

)

Thus
∂

(
∂z∗t
∂t

)
∂
(

γφt
qt

) > 0, iff

(
∂2Dt

At

∂t∂ γφt

qt

)
<

(E [z | z > z∗t ]− z∗t ) (1− Ω(z∗t ))

ωt(z∗t )
≡ ∆̂t

where ∆̂t > 0. In words, if an increase in the slope of the excess investment function
γφt

qt
does not cause too much growth in Dt

At
, then it an increase in γφt

qt
is associated to

an increase in the growth rate of the threshold z∗t .

B.9 Baseline vs complete markets

In this appendix we want to highlight the differences between the model presented in
this paper and the standard representative agent New Keynesian model with capital
(complete markets). Note first that the baseline economy collapses to the standard
complete market economy if the collateral constraint is made infinitely slack (assuming
that the support of entrepreneurs productivity distribution is bounded above). In that
case entrepreneurial net worth becomes irrelevant and only the entrepreneur with the
highest level of productivity zt produces, since she can frictionlessly lend all the capital
in the economy. Her productivity determines aggregate productivity Zt = (zmaxt )α.In
contrast, in the baseline model with incomplete markets, entrepreneurs’ firms can only
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use capital up to a multiple γ of their net worth , i.e. γat ≤ kt . Thus entrepreneurs
need to accumulate net worth (in units of capital) to alleviate these financial frictions.
Hence, in the baseline model, the distribution of aggregate capital across entrepreneurs
and the representative household matters and aggregate productivity depends on the
expected productivity of constrained firms, Z = (E [z | z > z∗t ])

α. The rest of the agents
(retailers, final good producers, capital producers) are identical in both economies.

Below we report the equilibrium conditions in the complete markets economy. Com-
paring them with those of the baseline economy reveals that they are identical up to
the fact that in the baseline Zt is endogenous (and determined by a bunch of extra
equations) and up to a term in the condition equating the cost of capital Rt with the
marginal return on capital.

The competitive equilibrium of the complete market model with capital consists of
the following 15 equations for the 15 variables {w, r, q, φ,K, L, C,D, ι, π,m, m̃, i, Y, T}:

m̃t = mt(1− τ)

wt = (1− α)mtZtKt
αLt

−α

Rt = αmtZtK
α−1
t Lt

1−α

Kt = Dt

K̇t = (ιt − δ)Kt

Ċt
Ct

=
rt − ρht
η

wt =
ΥLϑt
C−η
t

Ḋt = [(Rt − δqt)Dt + wtLt − Ct + Tt] /qt

rt = it − πt

rt =
Rt − δqt + q̇t

qt

(qt − 1− Φ′ (ιt)) (rt − (ιt − δ)) = q̇t − Φ′′ (ιt) ι̇t − (qtιt − ιt − Φ (ιt))(
rt −

Ẏt
Yt

)
πt =

ε

θ
(m̃t −m∗) + π̇t, m∗ =

ε− 1

ε

Yt = ZtK
α
t Lt

1−α
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Tt = (1−mt)Yt −
θ

2
π2
t Yt +

[
ιtqt − ιt −

ϕk

2
(ιt − δ)2

]
Kt

di = −υ
(
it −

(
ρht + ϕ (πt − π̄) + π̄

))
dt.

Dynamics after permanent real interest rate declines
Figure 12 displays the impulse responses to a permanent decline in the household’s

discount factor ρh, from to 1% to 0.5%. It shows that the decline in real rates (solid
blue line) is accompanied by a decline in TFP (dashed orange line). This is both a
consequence of the decline in the threshold (dashed-dotted yellow line) and the lower
slope of the excess investment rate (dotted purple line), which increase the share of
low-MRPK firms in production. The initial increase in real rates is a consequence of
the nominal rigidities and the Taylor rule: as nominal rates do not decrease as fast as
the natural rate on impact, it initially produces a fall in inflation that mechanically
increases the real rate. As nominal rates progressively adjust, this effect disappears
after one year.45

Figure 12: Transition to a low-real-rate steady state.

Notes: The figure shows the paths after an unexpected and permanent decline in the household’s discount factor from
1% to 0.5% expressed in deviations from the initial steady state. The lines depict real rates r (solid blue), TFP Z
(dashed orange), the threshold z∗ (dashed-dotted yellow) and the slope of the excess investment functionΦ̃(z) (dotted
purple line).

45In an economy without nominal rigidities, real rates would always be below the initial value, and
TFP would also fall (not shown) through the same channels.
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B.10 HANK vs RANK

Figure 13: Impulse responses.

Notes: The figure shows the dynamics of key variables in deviations from steady state of the economy. The solid orange
line is the response of the heterogeneous firms economy with flexible prices to the time preference shock, as in Figure
4.2. The dashed orange line is the corresponding response in the complete markets textbook representative agent New
Keynesian model. The solid blue line is the response of the baseline economy to monetary policy shock, as in Figure 4.2.
The dashed blue line is the corresponding response in the complete markets economy. The paths for the time preference
shock with sticky prices are shown in yellow. The orange solid line in panel d) is overlaid by the blue solid line.

B.11 Robustness of the model with respect to parameters

Here we show how our parameter choices affect our key result, that expansionary mon-
etary policy increases TFP. One at a time we vary all the parameters of the model. We
vary most parameters by multiplying their baseline value (Table 3 in the main text)
either by 2 or 1/2 (exceptions being π̄ which we set from 0% to 2%, and the subsidy
on input goods τ which we set to 0). The direction of the variation of the parameter is
always chosen so as to reduce the impact of the monetary policy shock on TFP, relative
to baseline. Deviating from the baseline in the opposite direction would increase the
impact. Furthermore, we report of removing capital adjustment costs (first bar).

We report the peak of the TFP response, which is typically observed between to-
wards the end of the second year after the shock. The response of TFP to a monetary
policy expansion is positive regardless of the variation we consider. Unsurprisingly, a
lower capital share is particularly effective at reducing the impact of monetary policy
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on TFP through capital misallocation.

Figure 14: Robustness of the positive TFP response

Notes: Peak TFP response to a 1 b.p. expansionary monetary policy shock, conditional on parameters.

B.12 Optimal policy with other shocks

The divine coincidence also holds in the optimal response to other shocks, such as a
shock to TFP or a financial shock, as we show in Appendix B.12. The TFP shock as-
sumes that the individual production function is now yt = Γtft(zt, kt, lt) = Γt(ztkt)

α(lt)
1−α,

where Γt is an exogenous TFP shock. The aggregate TFP is then Zt = Γt
(
Eωt(·) [z | z > z∗t ]

)α.
The financial shock temporarily changes the borrowing limit γt in equation (4):

qtkt ≤ γtqtat. This second shock is particularly interesting. As discussed by Reis (2022),
changes in borrowing constraints feed into capital misallocation, and may be helpful to
understand the widening gap between the average return on private capital investment,
which in our model is given by φtEωt(·) [z | z > z∗t ] , and the real interest rate on public
bonds rt. Our results show that, in response to this shock, the central bank should steer
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the real rate to follow the path of the natural rate, which may lead to a endogenous
change in the gap between private and public returns. In other words, the central bank
should still aim to preserve price stability, even if that leads endogenous misallocation
to change the gap.
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Figure 15: Timeless Ramsey policy in response to other shocks

TFP shock

Borrowing constraint (financial) shock

Notes: Regardless of the shock, the divine coincidence holds in all cases (approximately): The real rate follows the
natural rate (i.e. the real rate under the π = 0 policy), output follows the natural level of output, and inflation is very
close to 0. Lines that are not visible (in particular those referring to the π = 0 policy) are overlaid by the corresponding
optimal policy lines. In the first 4 panels, TFP drops by 1 p.p.. In the lower 4 panels, the drop in γ is set to 4.2% such
that TFP drops by 1 p.p...
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B.13 Computing the response of firm level capital growth

Figure 8 displays the average effect of an 1 b.p. expansionary monetary policy shock on
the growth rate of the capital stock in the first year in p.p.. – 100 ∗ (log kj,1 − log kj,0)

– as a function of the firms log MRPK before the shock log(MRPKj,0).We start the
simulation at the steady state. To isolate the effect of monetary policy from the effect
of idiosyncratic shocks, we subtract the evolution of this variable in the steady state.
That is we plot 100 ∗ ((log kj,1;MP − log kj,0)− (log kj,1;SS − log kj,0)). The relationship
is calculated analytically given equilibrium price paths, aggregate net-worth and the
Kolmogorov forward equation. In particular we proceed as follows:

Be At,t+1 the operator of the law of motion of net worth share distribution that moves
it forward from period t to t+1. This operator depends on factor prices. Be ft,s(zt, zs)
is the distribution of net worth shares across entrepreneurs that have productivity zs

in period s and had productivity zt in period t < s. Hence ft,t(zt, zt) = ωt(z). Then:

ft,t+1(zt, zt+1) = At,t+1ft,t(zt, zt).

Define f̄t,s(zt) as the distribution of net worth shares in period s across entrepreneurs
that had productivity zt in period t.

f̄t,t+1(zt) =

∞̂

0

ft,t+1(zt, zt+1)dzt+1

Define f̃t,s(zt) as the distribution of capital employed in period s by firms that had
productivity zt in period t.

f̃t,t+1(zt) =

∞̂

z∗t+1

γAtft,t+1(zt, zt+1)dzt+1

Figure 8 thus plots
(
log(f̃0,1;MP (z0))− log(f̃0,0(z0))

)
−
(
log(f̃0,1;SS(z0))− log(f̃0,0(z0))

)
=

log(f̃0,1;MP (z0)) − log(f̃0,1;SS(z0)), but converting the units on the x-axis from z to
MPRK.46 That is, the figure shows how much the capital stock of firms which had
MRPK z0 prior to the shock has changed on average 1 year after the monetary policy
shock due to the shock. The slope of this function is the exact (nonlinear) counterpart

46Note that the distribution f̃ changes even in steady state, hence f̃0,1;SS(z0) ̸= f̃0,0(z0).

79



of the β2 coefficient regression equation (41).
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C Numerical Appendix

We discretize the model using a finite difference approach and compute non-linearly
the responses to temporary change in parameters (an "MIT shock") using a Newton
algorithm. Instead of time iterations over guesses for aggregate sequences, as is common
in the literature, we use a global relaxation algorithm. This approach has been made
popular in discrete-time models by Juillard et al. (1998) thanks to Dynare, but it is
somewhat less common in continuous-time models (e.g. Trimborn et al., 2008). This
approach helps to overcome the curse of dimensionality since in the sequence space the
complexity of the problem grows only linearly in the number of aggregate variables,
whereas the complexity of the state-space solution grows exponentially in the number
of state variables. Recently Auclert et al. (2021) have exploited a particularly efficient
variant of this approach in the context of heterogeneous-agent models.47 We build on
these contributions when we compute the optimal transition path. Again we make use
of Dynare. We use its nonlinear Newton solver to compute both the steady state of
the Ramsey problem and the optimal transition path under perfect foresight. To find
the steady state, we provide Dynare with the steady state of the private equilibrium
conditions as a function of the policy instrument.

C.1 Finite difference approximation of the Kolmogorov For-

ward equation

The KF equation is solved by a finite difference scheme following Achdou et al. (2021). It
approximates the density ωt (z) on a finite grid z ∈ {z1, ..., zJ}, t ∈ {t1, ..., tN} with steps
∆z and time steps ∆t. We use the notation ωnj := ωn∆t(zj), j = 1, ..., J, n = 0, .., N.

The KF equation is then approximated as

ωnj − ωn−1
j

∆t
=

(
sn(zj)−

Ȧn
An

− (1− ψ)η

)
ωn(zj)

−
ωnj µ(zj)− ωnj−1µ(zj−1)

∆z
+
ωnj+1σ̃

2(zj+1) + ωnj−1σ̃
2(zj−1)− 2ωnj σ̃

2(zj)

2 (∆z)2
,

47Compared to Auclert et al. (2020), who break the solution procedure into two steps, first solving
for the idiosyncratic variables given the aggregate variables, we solve for the path of all aggregate and
idiosyncratic variables at once. Note that, besides the nonlinear perfect foresight method we refer to
here (see their Section 6), they also propose a linear method.

81



which, grouping, results in

ωnj − ωn−1
j

∆t
=

[(
sn(zj)−

Ȧn
An

− (1− ψ)η

)
− µ(zj)

∆z
− σ̃2(zj)

(∆z)2

]
︸ ︷︷ ︸

βn
j

ωnj

+

[
µ(zj−1)

∆z
+
σ̃2(zj−1)

2 (∆z)2

]
︸ ︷︷ ︸

ϱnj−1

ωnj−1 +

[
σ̃2(zj+1)

2 (∆z)2

]
︸ ︷︷ ︸

χn
j+1

ωnj+1.

The boundary conditions are the ones associated with a reflected process z at the
boundaries:48

ωn1 − ωn−1
1

∆t
= (βn1 + χn1 )ω

n
1 + χn2ω

n
j+1,

ωnJ − ωn−1
J

∆t
= (βnJ + ϱnJ)ω

n
J + ϱnJ−1ω

n
J−1.

If we define matrix

Bn =



βn1 + χn1 χn2 0 0 · · · 0 0 0

ϱn1 βn2 χn3 0 · · · 0 0 0

0 ϱn2 βn3 χn4 · · · 0 0 0
...

...
...

... . . . ...
...

...
0 0 0 0 · · · ϱnJ−2 βnJ−1 χnJ
0 0 0 0 · · · 0 ϱnJ−1 βnJ + ϱnJ


,

then we can express the KF equation as

ωn − ωn−1

∆t
= Bn−1ωn,

or
ωn =

(
I−∆tBn−1

)−1
ωn−1, (81)

where ωn =
[
ωn1 ωn2 ... ωnJ−1 ωnJ

]T
, and I is the identity matrix of dimension J.

48It is easy to check that this formulation preserves the fact that matrix Bn below is the transpose
of the matrix associated with the infinitesimal generator of the process.
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Extension to non-homogeneous grids Our model can be solved using a homoge-
neous grid. However, we use a non-homogeneous grid for the state z to economize on
grid points. This is useful for two reasons: First, it allows us to concentrate grid points
around z∗t , which is convenient since z∗t does not live on the grid, which introduces addi-
tional approximation error. Second, numerical error may pile up at the lower end of the
grid. We could not find a universally applicable way to implement non-homogeneous
grids in the economics literature, so we propose the following discretization scheme.49

Be z =
[
z1, z2, ... zJ−1 zJ

]
the grid. Define ∆za,b = zb − za and let ∆z =

1
2

[
∆z1,2, ∆z1,3, ∆z2,4, ..., ∆zJ−2,J ∆zJ−1,J

]
. We approximate the KFE (26)

using central difference for both the first derivative and the second derivative.

ωnj − ωn−1
j

∆t
=

(
sn(z)− (1− ψ)η − Ȧn

An

)
ωn (zj)−

[
µ(zj+1)ω

n (zj+1)− µ(zj−1)ω
n (zj−1)

∆zj−1,j+1

]
+

1

2

∆zj−1,jσ
2(zj+1)ω

n (zj+1) + ∆zj,j+1σ
2(zj−1)ω

n (zj−1)−∆zj−1,j+1σ
2(zj)ω

n (zj)
1
2 (∆zj−1,j+1)∆zj,j+1∆zj−1,j

which, grouping, results in

ωnj − ωn−1
j

∆t
=

[(
sn(z)− (1− ψ)η − Ȧn

An

)
− σ2(zj)

∆zj,j+1∆zj−1,j

]
︸ ︷︷ ︸

βn
j

ωn(zj)

+

[
µ(zj−1)

∆zj−1,j+1

+
σ2(zj−1)

(∆zj−1,j+1)∆zj,j+1

]
︸ ︷︷ ︸

ϱnj−1

ωn(zj−1)

+

[
− µ(zj+1)

∆zj−1,j+1

+
σ2(zj+1)

(∆zj−1,j+1)∆zj,j+1

]
︸ ︷︷ ︸

χn
j+1

ωn(zj+1).

The boundary conditions are the ones associated with a reflected process z at the
boundaries:

ωn1 − ωn−1
1

∆t
= (βn1 + χn1 )ωn(z1) + χn2ω

n
j+1,

49Our approach builds on the one in the appendix to Achdou et al., 2021. It differs from theirs in
two ways. First, it can be derived as a finite difference scheme over the KFE. Second, it relies on
central differences for the first order derivative, and hence it is not an upwind scheme.
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ωnJ − ωn−1
J

∆t
= (βnJ + ϱnJ)ωn(zJ) + ϱnJ−1ω

n
j−1.

where we define ∆z0,1 ≡ ∆z1,2 and ∆zJ,J+1 ≡ ∆zJ−1,J .
The law of motion of ω can equivalently be written in matrix form

ωn − ωn−1

∆t
= Bn−1ωn

where

Bn =



βn1 + χn1 χn2 0 0 · · · 0 0 0

ϱn1 βn2 χn3 0 · · · 0 0 0

0 ϱn2 βn3 χn4 · · · 0 0 0
...

...
...

... . . . ...
...

...
0 0 0 0 · · · ϱnJ−2 βnJ−1 χnJ
0 0 0 0 · · · 0 ϱnJ−1 βnJ + ϱnJ


,

Abstracting for brevity from the term
(
sn(z)− (1− ψ)η − Ȧn

An

)
, which is independent

of the grid, and spelling out Bn we have

ωn − ωn−1

∆t
=



σ2(z1)
∆z1,2∆z1,2

− µ(z1)
∆z1,2

− 2σ2(z1)
∆z1,2∆z1,2

− µ(z2)
∆z1,2

+
σ2(z2)

∆z1,2∆z1,2
0 · · ·

µ(z1)
∆z1,3

+
σ2(z1)

∆z1,3∆z1,2
− σ2(z2)

∆z1,2∆z2,3
− µ(z3)

∆z1,3
+

σ2(z3)
∆z1,3∆z2,3

· · ·

0
µ(z2)
∆z2,4

+
σ2(z2)

∆z2,4∆z2,3
− σ2(z3)

∆z2,3∆z3,4
· · ·

0 0
µ(z3)
∆z3,5

+
σ2(z3)

∆z3,4∆z3,5
· · ·

...
...

...
. . .


ωn.

We can rewrite this as follows

ωn − ωn−1

∆t
=



− µ(z1)
∆z1,2

− σ2(z1)
∆z1,2∆z1,2

− µ(z2)
∆z1,2

+
∆z2,3σ

2(z2)

∆z2,3(∆z1,2∆z1,2)
0 · · ·

µ(z1)
∆z1,3

+
σ2(z1)

∆z1,3∆z1,2
− (∆z1,2+∆z2,3)σ2(z2)

∆z1,3(∆z1,2∆z2,3)
− µ(z3)

∆z1,3
+

∆z3,4σ
2(z3)

∆z3,4(∆z1,3∆z2,3)
· · ·

0
µ(z2)
∆z2,4

+
∆z1,2σ

2(z2)

∆z1,2(∆z2,4∆z2,3)
− (∆z2,3+∆z3,4)σ2(z3)

∆z2,4(∆z2,3∆z3,4)
· · ·

0 0
µ(z3)
∆z3,5

+
∆z2,3σ

2(z3)

∆z2,3(∆z3,4∆z3,5)
· · ·

...
...

...
. . .


ωn.

Note that the bold terms in row i are equal to 1/∆zi, where ∆zi is the i-th element
of ∆z. Furthermore note that, up to the bold terms, the columns sum up to 0. Thus
∆zBn yields a vector of ones and the operation is mass preserving, in the sense that

84



the above relationship guarantees that∑
j

ωnj∆zj =
∑
j

ωn−1
j ∆zj = 1

where
∑

j ω
n
j∆zj is a trapezoid approximation of the integral

´
ωn(z)dz.

C.2 Finite difference approximation of the integrals

To approximate the integrals in
´ z
0
ωt (z) dz and

´∞
z∗t
zωt(z)dz we use the trapezoid rule.

I.e. if f(z) is either ωt (z) or zωt(z) and zj ≤ z̄ ≤ zj+1 then the integral from the closest
lower gridpoint is given by

ˆ z̄

zj

f (z) dz =

[
f (zj) +

1

2
[f (zj+1)− f (zj)]

z̄ − zj
zj+1 − zj

]
(z̄ − zj)

We use this formula to construct the integrals over a larger range piecewise. For
example:

ˆ zN

z1

f (z) dz =
[

1
2

1 1 · · · 1 1
2

]

f (z1)

f (z2)
...

f (zN)


and

ˆ z∗

z1

f (z) dz =
[

1
2 1 1 · · · 1 1

2

]


f (z1)

f (z2)
...

f (zj∗−1)


+

[
f (zj∗−1) +

1

2
[f (zj∗)− f (zj∗−1)]

z∗ − zj∗−1

zj∗ − zj∗−1

]
(z∗ − zj∗−1)

where j∗= argmin
j

{j ≤ J |zj∗ > z∗}

C.3 Algorithm to solve for the SS

Here we present how to solve for the SS of the private equilibrium, that is for the SS
when the central bank sets a certain level of the nominal interest rate in SS iss.

We know that in SS consumption does not grow, hence from (14)
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rss = ρh. (82)

We also know that in SS, the investment rate is equal to the depreciation,

ιss = δ. (83)

This means that, from equation (17) and the functional form we assumed for the capital
adjustment costs

(qt − 1− Φ′ (ιt)) (rt − (ιt − δ)) = q̇t − Φ′′ (ιt) ι̇t − (qtιt − ιt − Φ (ιt)) (84)

(
qss − 1− ϕk(ιss − δ)

) (
ρhh − (ιss − δ)

)
= 0− ϕk ∗ 0−

(
qssιss − ιss − ϕk(ιss − δ)

)

ρhh(qss − 1) = δ(1− qss)

.From here we can solve for the steady state value of qss, which is given by

qss = 1. (85)

Furthermore, combining (82) with the fisher equation and the fact that the planner
sets a certain nominal rate iss we get that

πss = iss − ρh. (86)

In SS, π̇t = 0 and Ẏt = 0. Hence, from equation (21) we obtain

mss =

(
m∗ + ρhπss

θ

ε

)
. (87)

Using equation (34) and (82),

ρh =
1

qss

(
αmtZtA

α−1
t L1−α z∗t

γX t

)
− δ (88)

From equation (35) and (82),
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Ȧt
At

= 0 =
1

qt
(αmtZtAt

α−1Lt
1−α −Rt(1− Ω(z∗t )) +Rt − δqt − qt(1− ψ)η). (89)

Plugging the latter equation into the former, using qSS = 1 and using the definition of
rt we obtain:

ρh + δ =
[
(ρh + δ) (γ(1− Ω(z∗t ))− 1) + (1− ψ)η + δ

] z∗

γX∗ . (90)

In the algorithm, we use a non-linear equation solver to obtain z∗ from this equation.
The Algorithm.

• Get rss = ρh, πss = π̄ and iss = ρh + πss and Rss = qss(ρh + δ) and mss =

m∗ + ρhπss θ
ϵ

.

• Given that our calibration target for Lss = 1, we “guess” Lss = 1

• Let n now denote the iteration counter. Make an initial guess for the net worth
distribution ω0

1. Use a non-linear equation solver on equation (90) to obtain z∗ from equation
(90).

2. Obtain Zn = (γnX
∗
n)
α .

3. Find A from equation (33),

An =

[
qssρh + δqss

αmnZnLm1−α z∗t
γXt

] 1

α−1

.

4. Find the stocks Kn = γ(1− Ωn(z∗))An, Dn = Kn − An.

5. Compute wn = (1− α)mssZnAn
αLn

−α,φn = α
(

(1−α)
wn

)(1−α)/α
mss 1

α .

6. Get aggregate output Y = ZnA
α
nLn

1−α, transfers Tn = (1−mss)Yn −
θ
2
(πss)2 Yn + (1− ψ)ηAt , and consumption Cn = wnLm + rssDn + Tn.

7. Update ŝnj = 1
qss

(γmax {zφn −Rn, 0}+Rn−δqss) and employ it to construct
matrix Bn−1.
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8. Update ωn+1 using equation ωn+1−ωn

∆t
= Bnωn+1.

9. If the net worth distribution do not coincide with the guess, set n = n + 1

and return to point 1

• Set Υ =
(
wL=1C

−η
L=1

)
to ensure our “guess” for Lss is correct.
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D Computing optimal policies in heterogeneous-agent

models

D.1 General algorithm

Solving for the optimal policy in models with heterogeneous agents poses a certain
challenge since the state in such a model contains a distribution, which is an infinite-
dimensional object. In this Section, we explain how such models can be solved in
a relatively straightforward manner. Our approach relies on three main conceptual
ingredients: (i) finite difference approximation of continuous time and continuous id-
iosyncratic states, (ii) symbolic derivation of the planner’s first-order conditions, and
(iii) use of a Newton algorithm to solve the optimal policy problem non-linearly in the
sequence space. Here we present a general overview which goes beyond the particular
model presented in the paper.

(i) Finite difference approximation A continuous-time, continuous-space heterogeneous-
agent model discretized using an upwind finite-difference method becomes a discrete-
time, discrete-space model. In this discretized model the dynamics of the (now finite-
dimensional) distribution µt at period t are given by

µt =
(
I−∆tAT

t

)−1
µt−1, (91)

where ∆t is the time step between periods and At is a matrix whose entries depend
nonlinearly and in closed form on the idiosyncratic and aggregate variables in period
t.50 Similarly, the HJB equation is approximated as51

ρvt+1 = ut+1 +At+1vt+1, − (vt+1 − vt) /∆t. (92)

Together with additional static equations, such as market clearing conditions or bud-
get constraints, and aggregate dynamic equations, including the Euler equations of
representative agents (if any) and the dynamics of aggregate states, they define the
discretized model.

50Technically, this matrix results from the discretization of the infinitesimal generator of the id-
iosyncratic states. In the example of Section 2, µt = ωt and At = Bt.

51In the model presented in this paper the HJB can be solved analytically and hence there is no
need to solve it computationally.
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Though we have ended up with a discrete-time approximation, casting the original
model in continuous time is central to our method. The discretized dynamics of the
distribution (91) and Bellman equation (92) present two advantages compared to their
counterparts in the discrete-time continuous-state formulation typically employed in
the literature. First, the analytical tractability of the original continuous-time model
implies that the agents’ optimal choices in the discretized version are always “on the
grid”, avoiding the need for interpolation, and are “one step at a time” making the matrix
Πt sparse.52 Second, the private agent’s FOCs hold with equality even at the exogenous
boundaries (see Achdou et al. (2021) for a detailed discussion of these advantages).

(ii) Symbolic derivation of planner’s FOCs Once we have a finite-dimensional
discrete-time discrete-space model, we can derive the planner’s FOCs by symbolic dif-
ferentiation using standard software packages. For convenience, we rely on Dynare’s
toolbox for Ramsey optimal policy to do this task for us. To this end, we simply pro-
vide the discretized version of our model’s private equilibrium conditions to Dynare
(the discretized counterpart to the equations in Appendix B.7), making use of loops
for the heterogeneous-agent block, as in Winberry (2018). We furthermore provide the
discretized objective function, and Dynare then takes symbolic derivatives to construct
the set of optimality conditions of the planner for us.

A natural question at this stage is under which conditions the optimal policies of
the discrete-time, discrete-space problem coincide with those of the original problem.
The following proposition shows that, if the time interval is small enough (the stan-
dard condition when approximating continuous-time models), then the two solutions
coincide.

Proposition E.1 : Provided that all the Lagrange multipliers associated to the
equilibrium conditions are continuous for t > 0, the solution of the "discretize-optimize"
and the "optimize-discretize" algorithms converge to each other as the time step ∆t goes
towards 0.

Proof : See Appendix D.3.
The proposition guarantees that both strategies coincide when ∆t goes towards zero.

This proposition is quite general, as most continuous-time, perfect-foresight, general
equilibrium models do not feature discontinuities for t > 0.

52The introduction of Poisson shocks would not change the sparsity of matrix Πt.
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The model presented in Section 2 is arguably simpler than the general heterogenous-
agent model covered by Proposition 1, as it features an analytic solution for the HJB
equation. To get an idea of the performance of our method in a case in which the
HJB is also a constraint in the planner’s problem, as well as to showcase its generality
in dealing with different problems, we compute the optimal monetary policy in the
HANK model of Nuño and Thomas (2022) using our method in Dynare (see Appendix
D.4). We compare our results with those using their "optimize-discretize" algorithm at
monthly frequency △t = 1/12. We conclude that both approaches essentially coincide.

(iii) Newton algorithm to solve the optimal policy problem non-linearly in
the sequence space Finally, we use the discretized optimality conditions of the plan-
ner to compute non-linearly the optimal responses to a temporary change in parameters
(an "MIT shock") using a Newton algorithm. Instead of time iterations over guesses
for aggregate sequences, as is common in the literature, we use a global relaxation al-
gorithm. This approach has been made popular in discrete-time models by Juillard
et al. (1998) thanks to Dynare, but it is somewhat less common in continuous-time
models (e.g. Trimborn et al., 2008). This approach helps to overcome the curse of
dimensionality since in the sequence space the complexity of the problem grows only
linearly in the number of aggregate variables, whereas the complexity of the state-space
solution grows exponentially in the number of state variables. Recently Auclert et al.
(2021) have exploited a particularly efficient variant of this approach in the context of
heterogeneous-agent models.53 We build on these contributions when we compute the
optimal transition path. Again we make use of Dynare. We use its nonlinear Newton
solver to compute both the steady state of the Ramsey problem and the optimal tran-
sition path under perfect foresight.54 Our hope is that the convenience of using Dynare
will make optimal policy problems in heterogeneous-agent models easily accessible to a
large audience of researchers.

The solution to the perfect foresight problem can be easily adapted to the case
with aggregate shocks. As Boppart et al. (2018) show, the perfect-foresight transitional

53Compared to Auclert et al. (2020), who break the solution procedure into two steps, first solving
for the idiosyncratic variables given the aggregate variables, we solve for the path of all aggregate and
idiosyncratic variables at once. Note that, besides the nonlinear perfect foresight method we refer to
here (see their Section 6), they also propose a linear method.

54To find the steady state, we provide Dynare with the steady state of the private equilibrium
conditions as a function of the policy instrument.
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dynamics to an "MIT shock" coincides with the solution of the model with aggregate
uncertainty using a first-order perturbation approach. We follow this approach to an-
alyze the optimal response to a cost-push shock below.

As discussed in Section 3, our solution approach is different from the one in Winberry
(2018) or Ahn et al. (2018). These papers expand the seminal contribution by Reiter
(2009), based on a two-stage algorithm that (i) first finds the nonlinear solution of the
steady state of the model and (ii) then applies perturbation techniques to produce a
linear system of equations describing the dynamics around the steady state. These
methods, however, were not created to deal with the problem of finding the optimal
policies, the focus of our algorithm, as the first stage requires the computation of the
steady state, which in our case is the steady state of the problem under optimal policies.
Our algorithm finds the steady state of the planner’s problem, including the Lagrange
multipliers. Naturally, this steady does not need to coincide with the steady state that
can be found by looking for the value of the planner’s policy that maximizes steady-state
welfare.

D.2 Comparison to other solution methods

We are aware of 4 methods to solve Ramsey problems in general heterogeneous agents
models. We compare them in this table. The purpose is not to argue that one approach
dominates the others, but to show similarities and differences. An advantage of our
method is that it allows for an arbitrary path of the distribution while allowing for
occasionally binding constraints and being highly automatized. Grouping 4 papers into
as one conceptual method glosses over some differences.

The next appendix shows that methods (1) and (4) lead to the same result in the
limit as the time step converges to 0, and the subsequent appendix shows that this is
indeed the case even for a normal calibration, i.e. outside of this limit.
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D.3 Proof of proposition D.1

Proof: The proof has the following structure. First, we set up a generic planner’s
problem in a continuous-time heterogeneous-agent economy without aggregate uncer-
tainty. Second, we derive the continuous time optimality conditions of the planner’s
problem and discretize them. Third, we discretize the planners problem and the derive
the optimality conditions. Fourth, we compare the two sets of discretized optimality
conditions.

1. The generic problem The planner’s problem in an economy with heterogeneity
among one agent type (e.g. households or firms) can be written as

max
Zt,ut(x),µt(x),vt(x)

ˆ ∞

0

exp(−ϱt)f0(Zt)dt (93)

s.t. ∀t

Ẋt = f1(Zt) (94)

U̇t = f2(Zt) (95)

0 = f3(Zt) (96)

Ũt =

ˆ
f4 (x, ut(x), Zt)µt (x) dx (97)

ρvt(x) = v̇t(x) + f5(x, ut(x), Zt) (98)

+
I∑
i=1

bi (x, ut(x), Zt)
∂vt(x)

∂xi
+

I∑
i=1

I∑
k=1

(
σ(x)σ(x)⊤

)
i,k

2

∂2vt(x)

∂xi∂xk
, ∀x

0 =
∂f5
∂uj,t

+
I∑
i=1

∂bi
∂uj,t

∂vt(x)

∂xi
, j = 1, ..., J, ∀x. (99)

µ̇t (x) = −
I∑
i=1

∂

∂xi
[bi (x, ut(x), Zt)µt (x)] (100)

+
1

2

I∑
i=1

I∑
k=1

∂2

∂xi∂xk

[(
σ(x)σ(x)⊤

)
i,k
µt (x)

]
, ∀x

X0 = X̄0 (101)

µ0 (x) = µ̄0 (x) (102)

lim
t→∞

U = Ū∞ (103)

lim
t→∞

v(x) = v̄(x)∞ (104)

94



where we have adopted the following notation:

• Variables (capitals are reserved for aggregate variables):

– x individual state vector with I elements

– u individual control vector with J elements

– v individual value function vector with 1 element

– u(x) control vector as function of individual state

– µ(x) distribution of agents across states

– v(x) value function as function of individual state

– X aggregate state vector (other than µ)

– Û aggregate control vector of purely contemporaneous variables

– U aggregate control vector of intertemporal variables

– Ũ control vector of aggregator variables

– Zt =
{
Ũt, Ut, Ūt, Xt

}
vector of all aggregate variables

• Functions

– b function that determines the drift of x

– f0 welfare function

– f1, f2, f3 aggregate equilibrium conditions

– f4 aggregator function

– f5 individual utility function

Line (93) is the planner’s objective function.55 Equations (94)-(96) are the aggregate
equilibrium conditions for aggregate states, jump variables and contemporaneous vari-
ables. In our model, examples for each of these three types of equations are the law of
motion of aggregate capital, the household’s Euler equation and the household’s labor
supply condition, respectively. Equation (97) links aggregate and individual variables,
such as the definition of aggregate TFP in our model. Equations (98) and (99) are the
individual agent’s value function and first order conditions, which must hold across the

55Notice that the planner’s discount factor, ϱ, can be different to that of individual agents, ρ.
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whole individual state vector x. In our model we do not have these two types of equa-
tions since we can analytically solve the individual optimal choice. The Kolmogorov
Forward equation (24) determines the evolution of the distribution of agents. Finally
(101)-(104) are the initial and terminal conditions for the aggregate and individual state
and dynamic control variables. In our model these are the initial capital stock and firm
distribution and the terminal conditions for variables such as consumption.

2. Optimize, then discretize First we consider the approach introduced in Nuño
and Thomas (2022), namely to compute the first order conditions using calculus of
variations and then to discretize the problem using an upwind finite difference scheme.

2.a The Lagrangian The Lagrangian for this problem is given by:56

L =

ˆ ∞

0

{
e−ϱt f0(Zt)

+ λ1,t

(
Ẋt − f1(Zt)

)
+ λ2,t

(
U̇t − f2(Zt)

)
+ λ3,t (f3(Zt))

+ λ4,t

(
Ũt −

ˆ
f4 (x, ut(x), Zt)µt (x) dx

)
+

ˆ [
λ5,t(x)

(
−ρvt(x) + v̇t(x) + f5(x, ut(x), Zt) +

I∑
i=1

bi (x, ut(x), Zt)
∂vt(x)

∂xi
+

I∑
i=1

σ2
i (x)

2

∂2vt(x)

∂2xi

)]
dx

+

J∑
j=1

ˆ [
λ6,j,t(x)

(
∂f5
∂uj,t

+

I∑
i=1

∂bi
∂uj,t

∂vt(x)

∂xi

)]
dx

+

ˆ [
λ7,t(x)

(
−µ̇t (x) +

(
−

I∑
i=1

∂

∂xi
[bi (x, ut(x), Zt)µt (x)] +

1

2

I∑
i=1

∂2

∂2xi

[
σ2
i (x)µt (x)

]))]
dx

}
dt

where λ1 to λ7 denote the multipliers on the respective constraints. For convenience,
we write the time derivatives in a separate line at the end. The Lagrangian becomes:

L =

ˆ ∞

0

{
e−ϱt f0(Zt)

+ λ1,t (−f1(Zt))

+ λ2,t (−f2(Zt))

56For simplicity, we assume that the Wiener processes driving the dynamics of the state x are
independent, though the proof can be trivially extended to that case, at the cost of a more cumbersome
notation.
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+ λ3,t (−f3(Zt))

+ λ4,t

(
Ũt −

ˆ
f4 (x, ut(x), Zt)µt (x) dx

)
+

ˆ [
λ5,t(x)

(
−ρvt(x) + f5(x, ut(x), Zt) +

I∑
i=1

bi (x, ut(x), Zt)
∂vt(x)

∂xi
+

I∑
i=1

σ2
i (x)

2

∂2vt(x)

∂2xi

)]
dx

+

J∑
j=1

ˆ [
λ6,j,t(x)

(
∂f5,t
∂uj,t

+

I∑
i=1

∂bi
∂uj,t

∂vt(x)

∂xi

)]
dx

+

ˆ [
λ7,t(x)

(
−

I∑
i=1

∂

∂xi
[bi (x, ut(x), Zt)µt (x)] +

1

2

I∑
i=1

∂2

∂2xi

[
σ2
i (x)µt (x)

])]
dx

}
dt

+

ˆ ∞

0

{
e−ϱt λ1,tẊt + λ2,tU̇t +

ˆ
[λ5,tv̇t(x)] dx−

ˆ
[λ7,tµ̇t (x)] dx

}
dt.

We have ignored the terminal and initial conditions but we will account for them
later on. Now we manipulate the Lagrangian using integration by parts in order to
bring it into a more convenient form. We start with the last line. Switching the order
of integration, the last line becomes

ˆ ∞

0

e−ϱt λ1,tẊt dt+

ˆ ∞

0

e−ϱt λ2,tU̇t dt+

ˆ ˆ ∞

0

[
e−ϱtλ5,t(x)v̇t(x)

]
dt dx

−
ˆ ˆ ∞

0

[
e−ϱtλ7,t(x)µ̇t (x)

]
dt dx

Now we integrate this expression by parts with respect to time t, using
ˆ ∞

0

e−ϱt atḃt dt =
[
e−ϱtatbt

]∞
0
−
ˆ ∞

0

e−ϱt(ȧ1,t − ϱa1,t)bt dt

= lim
t→∞

e−ϱtatbt − a0b0 −
ˆ ∞

0

e−ϱt(ȧt − ϱat)bt dt

to get

lim
t→∞

e−ϱtλ1,tXt − λ1,0X0 −
ˆ ∞

0

e−ϱt(λ̇1,t − ϱλ1,t)Xtdt+ lim
t→∞

e−ϱtλ2,tUt − λ2,0U0

−
ˆ ∞

0

e−ϱt(λ̇2,t − ϱλ2,t)Utdtx

+

ˆ (
lim
t→∞

e−ϱtλ5,t(x)vt(x)− λ5,0(x)v0(x)
)
dx−

ˆ ˆ ∞

0

e−ϱt(λ̇5,t(x)− ϱλ5,t(x))vt(x)dtdx

−
ˆ

lim
t→∞

e−ϱtλ7,t(x)µt(x)− λ7,0(x)µ0(x)dx+

ˆ ˆ ∞

0

e−ϱt(λ̇7,t(x)− ϱλ7,t(x))µt (x) dtdx
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Now we use the initial and terminal conditions to drop some limt→∞ and t = 0

terms,

+ lim
t→∞

e−ϱtλ1,tXt − λ2,0U0 −
ˆ ∞

0

e−ϱt(λ̇1,t − ϱλ1,t)Xtdt−
ˆ ∞

0

e−ϱt(λ̇2,t − ϱλ2,t)Utdt

−
ˆ
λ5,0(x)v0(x)dx+

ˆ ˆ ∞

0

e−ϱt(λ̇5,t(x)− ϱλ5,t(x))vt(x)dtdx

−
ˆ

lim
t→∞

e−ϱtλ7,t(x)µt(x)dx+

ˆ ˆ ∞

0

e−ϱt(λ̇7,t(x)− ϱλ7,t(x))µt (x) dtdx

Next we integrate lines 6 to 8 by parts with respect to x. This yields:

+

ˆ {[(
−ρλ5,t(x)vt(x) + f5(x, ut(x), Zt)−

I∑
i=1

∂bi (x, ut(x), Zt)λ5,t(x)

∂xi
vt(x)

)]
dx

+

ˆ [(
+
1

2

I∑
i=1

∂2

∂2xi

[
σ2
i (x)λ5,t(x)

]
vt(x)

)]
dx

+
J∑
j=1

ˆ λ6,j,t(x)∂f5,t
∂uj,t

−
I∑
i=1

∂
[
λ6,j,t(x)

∂bi
∂uj,t

]
∂xi

vt(x)

 dx
+

ˆ [( I∑
i=1

∂λ7,t(x)

∂xi
[bi (x, ut(x), Zt)µt (x)] +

I∑
i=1

∂2λ7,t(x)

∂2xi

σ2
i (x)

2
µt (x)

)]
dx

}
dt

Putting this all together the Lagrangian has become:

L =

ˆ ∞

0

{
e−ϱt f0(Zt)

+ λ1,t (−f1(Zt))

+ λ2,t (−f2(Zt))

+ λ3,t (−f3(Zt))

+ λ4,t

(
Ũt −

ˆ
f4 (x, ut(x), Zt)µt (x) dx

)
+

ˆ (
−ρλ5,t(x)vt(x) + λ5,t(x)f5(x, ut(x), Zt)−

I∑
i=1

∂ [bi (x, ut(x), Zt)λ5,t(x)]

∂xi
vt(x)

)
dx

+

ˆ (
1

2

I∑
i=1

∂2

∂2xi

[
σ2
i (x)λ5,t(x)

]
vt(x)

)
dx
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+
J∑
j=1

ˆ λ6,j,t(x)∂f5,t
∂uj,t

−
I∑
i=1

∂
[
λ6,j,t(x)

∂bi
∂uj,t

]
∂xi

vt(x)

 dx
+

ˆ ∞

0

[(
I∑
i=1

∂λ7,t(x)

∂xi
[bi (x, ut(x), Zt)µt (x)] +

I∑
i=1

∂2λ7,t(x)

∂2xi

σ2
i (x)

2
µt (x)

)]
dx

}
dt

+ lim
t→∞

e−ϱtλ1,tXt − λ2,0U0 −
ˆ ∞

0

e−ϱt(λ̇1,t − ϱλ1,t)Xtdt−
ˆ ∞

0

e−ϱt(λ̇2,t − ϱλ2,t)Utdt

+

ˆ
−λ5,0(x)v0(x)dx+

ˆ ˆ ∞

0

e−ϱt(λ̇5,t(x)− ϱλ5,t(x))vt(x)dtdx

−
ˆ

lim
t→∞

e−ϱtλ7,t(x)µt(x)dx+

ˆ ˆ ∞

0

e−ϱt(λ̇7,t(x)− ϱλ7,t(x))µt (x) dtdx.

2.b Optimality conditions in the continuous state space We take the Gateaux
derivatives in direction ht(x) for each endogenous variable x. These derivatives have to
be equal to zero for any ht(x) in the optimum. This implies the following optimality
conditions:

Aggregate variables:

Ut : 0 = −(λ̇2,t − ϱλ2,t) (105)

+
∂f0,t
∂Ut

− λ1,t
∂f1,t
∂Ut

− λ2,t
∂f2,t
∂Ut

− λ3,t
∂f3,t
∂Ut

− λ4,t

ˆ
∂f4,t
∂Ut

µt (x) dx (106)

+

ˆ [
λ5,t(x)

(
∂f5,t
∂Ut

+
I∑
i=1

∂bi,t
∂Ut

∂vt(x)

∂xi

)]
dx (107)

+
J∑
j=1

ˆ [
λ6,j,t(x)

(
∂2f5,t
∂uj,t∂Ut

+
I∑
i=1

∂bi,t
∂uj,t∂Ut

∂vt(x)

∂xi

)]
dx (108)

+

ˆ [
λ7,t(x)

(
−

I∑
i=1

∂

∂xi

[
∂bi,t
∂Ut

µt (x)

])]
dx, (109)

∀t > 0, (110)

0 = λ2,0. (111)

Xt : 0 = −(λ̇1,t − ϱλ1,t)
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+
∂f0,t
∂Xt

− λ1,t
∂f1,t
∂Xt

− λ2,t
∂f2,t
∂Xt

− λ3,t
∂f3,t
∂Xt

− λ4,t

ˆ
∂f4,t
∂Xt

µt (x) dx

+

ˆ [
λ5,t(x)

(
∂f5,t
∂Xt

+
I∑
i=1

∂bi,t
∂Xt

∂vt(x)

∂xi

)]
dx

+
J∑
j=1

ˆ [
λ6,j,t(x)

(
∂2f5,t

∂uj,t∂Xt

+
I∑
i=1

∂bi,t
∂uj,t∂Xt

∂vt(x)

∂xi

)]
dx

+

ˆ [
λ7,t(x)

(
−

I∑
i=1

∂

∂xi

[
∂bi,t
∂Xt

µt (x)

])]
dx,

∀t ≥ 0,

0 = lim
t→∞

e−ϱtλ1,t(x).

Ût : 0 = 0

+
∂f0,t

∂Ût
− λ1,t

∂f1,t

∂Ût
− λ2,t

∂f2,t

∂Ût
− λ3,t

∂f3,t

∂Ût
− λ4,t

ˆ
∂f4,t

∂Ût
µt (x) dx

+

ˆ [
λ5,t(x)

(
∂f5,t

∂Ût
+

I∑
i=1

∂bi,t

∂Ût

∂vt(x)

∂xi

)]
dx

+
J∑
j=1

ˆ [
λ6,j,t(x)

(
∂2f5,t

∂uj,t∂Ût
+

I∑
i=1

∂bi,t

∂uj,t∂Ût

∂vt(x)

∂xi

)]
dx

+

ˆ [
λ7,t(x)

(
−

I∑
i=1

∂

∂xi

[
∂bi,t

∂Ût
µt (x)

])]
dx,

∀t ≥ 0.

Ũt : 0 = λ4,t

+
∂f0,t

∂Ũt
− λ1,t

∂f1,t

∂Ũt
− λ2,t

∂f2,t

∂Ũt
− λ3,t

∂f3,t

∂Ũt
− λ4,t

ˆ
∂f4,t

∂Ũt
µt (x) dx

+

ˆ [
λ5,t(x)

(
∂f5,t

∂Ũt
+

I∑
i=1

∂bi,t

∂Ũt

∂vt(x)

∂xi

)]
dx

+
J∑
j=1

ˆ [
λ6,j,t(x)

(
∂2f5,t

∂uj,t∂Ũt
+

I∑
i=1

∂bi,t

∂uj,t∂Ũt

∂vt(x)

∂xi

)]
dx
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+

ˆ [
λ7,t(x)

(
−

I∑
i=1

∂

∂xi

[
∂bi,t

∂Ũt
µt (x)

])]
dx,

∀t ≥ 0.

Value function, distribution and policy functions

vt (x) : 0 =

(
−λ5,t(x)ρ−

I∑
i=1

∂ [λ5,t(x)bi (x, ut(x), Zt)]

∂xi
+

1

2

I∑
i=1

∂2

∂2xi

[
σ2
i (x)λ5,t(x)

])

−
J∑
j=1

I∑
i=1

∂

∂xi

(
λ6,j,t(x)

∂bi (x, ut(x), Zt)

∂uj,t

)
−(λ̇5,t(x)− ϱλ5,t(x)),

∀t > 0,

0 = λ5,0(x).

µt (x) : 0 = −λ4,tf4 (x, ut(x), Zt)

+λ7,t(x)

(
I∑
i=1

∂λ7,t(x)

∂xi
bi (x, ut(x), Zt) +

I∑
i=1

∂2λ7,t(x)

∂2xi

σ2
i (x)

2

)
+(λ̇7t(x)− ϱλ7,t(x)),

∀t ≥ 0,

0 = lim
t→∞

e−ϱtλ7,t(x).

ul,t (x) : 0 = −λ4,t
∂f4
∂ul,t

µt (x)

+

=0︷ ︸︸ ︷[
λ5,t(x)

(
∂f5
∂ul,t

+
I∑
i=1

∂bi
∂ul,t

∂vt(x)

∂xi

)]
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+
J∑
j=1

λ6,k,t(x)

(
∂2f5

∂ul,t∂uj,t
+

I∑
i=1

∂2bi
∂ul,t∂uj,t

∂vt(x)

∂xi

)

−

(
I∑
i=1

∂λ7,t(x)

∂xi

∂bi,t
∂ul,t

µt (x)

)
.

2.c Discretized optimality conditions Now we discretize these conditions with
respect to time and idiosyncratic states.

The idiosyncratic state is discretized by a evenly-spaced grid of size [N1, ..., NI ]

where 1, .., I are the dimensions of the state x. We assume that in each dimen-
sion there is no mass of agents outside the compact domain [xi,1, xi,Ni

]. The state
step size is ∆xi.We define xn ≡ (x1,n1 , ..., xi,ni

, ..., xI,nI
), where n1 ∈ {1, N1} , ..., nI ∈

{1, NI}. We are assuming that, due to state constraints and/or reflecting boundaries,
the dynamics of idiosyncratic states are constrained to the compact set [x1,1, x1,N1 ] ×
[x2,1, x2,N2 ]×....×[xI,1, xI,NI

]. We also define xni+1 ≡ (x1,n1 , ..., xi,ni+1, ..., xI,nI
), xni−1 ≡

(x1,n1 , ..., xi,ni−1, ..., xI,nI
) fnt ≡ f (xn, unt , Zt), f

ni−1
t ≡ f (xni−1, unt , Zt) and fni+1

t ≡
f (xni+1, unt , Zt). I.e. the superscript n indicates a particular grid point and the super-
script ni + 1 and ni − 1 indicate neighboring grid points along dimension i.

To discretize the problem we now replace (i) time derivatives of multipliers by back-
ward derivatives, (ii) integrals by sums (iii) derivatives with respect to x by the upwind
derivatives ∇ or ∇̂ :

∇i [v
n
t ] ≡

[
Ibni,t>0

vni+1
t − vnt
∆xi

+ Ibni,t<0
vnt − vni−1

t

∆xi

]
,

∇̂i [µ
n
t ] ≡

Ibni+1
i,t <0

µni+1
t − Ibni,t<0µ

n
t

∆xi
+

Ibni,t>0µ
n
t − I

b
ni−1
i,t >0

µni−1
t

∆xi

 ,
for any discretized functions vnt , µnt . We simplify the notation for sums

∑
n ≡

∑
n1∈{1,..,N1},..,nI∈{1,..,NI} .

We maintain the subscript t even if it refers now to discrete time with a step ∆t,
that is, Xt+1is the shortcut for Xt+△t. The second-order derivative is approximated as

△i [v
n
t ] ≡

[(
vni+1
t

)
+
(
vni−1
t

)
− 2 (vnt )

(∆xi)
2

]
.

We start with the optimality condition for Ut
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Ut : 0 = −
(
λ2,t − λ2,t−1

∆t
− ϱλ2,t

)
(112)

+
∂f0
∂Ut

− λ1,t
∂f1
∂Ut

− λ2,t
∂f2
∂Ut

− λ3,t
∂f3
∂Ut

− λ4,t

N∑
n=1

∂fn4
∂Ut

µnt (113)

+
∑
n

[
λn5,t

(
∂fn5
∂Ut

+
I∑
i=1

∂bni
∂Ut

∇i [v
n
t ]

)]

+
J∑
j=1

∑
n

[
λn6,j,t

(
∂2fn5
∂uj∂Ut

+
I∑
i=1

∂bni
∂uj∂Ut

∇i [v
n
t ]

)]

+
∑
n

[
−λn7,t

I∑
i=1

∇̂i

[
∂bni,t
∂Ut

µnt

]]
(114)

∀t ≥ 0.

The optimality conditions for the other aggregate variables look very much alike:

Xt : 0 = −(
λ1,t − λ1,t−1

∆
− ϱλ1,t)

+
∂f0
∂Xt

− λ1,t
∂f1
∂Xt

− λ2,t
∂f2
∂Xt

− λ3,t
∂f3
∂Xt

− λ4,t
∑
n

∂fn4
∂Xt

µnt

+
∑
n

[
λn5,t

(
∂fn5
∂Xt

+
I∑
i=1

∂bni
∂Xt

∇i [v
n
t ]

)]

+
J∑
j=1

∑
n

[
λn6,j,t

(
∂2fn5
∂uj∂Xt

+
I∑
i=1

∂bni
∂uj∂Xt

∇i [v
n
t ]

)]

+
∑
n

[
−λn7,t

I∑
i=1

∇̂i

[
∂bni,t
∂Xt

µnt

]]
∀t > 0.

Ût : 0 = 0

+
∂f0

∂Ût
− λ1,t

∂f1

∂Ût
− λ2,t

∂f2

∂Ût
− λ3,t

∂f3

∂Ût
− λ4,t

∑
n

∂fn4

∂Ût
µnt
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+
∑
n

[
λn5,t

(
∂fn5

∂Ût
+

I∑
i=1

∂bni

∂Ût
∇i [v

n
t ]

)]

+
J∑
j=1

∑
n

[
λn6,j,t

(
∂2fn5

∂uj∂Ût
+

I∑
i=1

∂bni

∂uj∂Ût
∇i [v

n
t ]

)]

+
∑
n

[
−λn7,t

I∑
i=1

∇̂i

[
∂bni,t

∂Ût
µnt

]]
∀t ≥ 0.

Ũt : 0 = λ4,t

+
∂f0

∂Ũt
− λ1,t

∂f1

∂Ũt
− λ2,t

∂f2

∂Ũt
− λ3,t

∂f3

∂Ũt
− λ4,t

N∑
n=1

∂fn4
∂Ũt

µnt

+
∑
n

[
λn5,t

(
∂fn5
∂Ũt

+
I∑
i=1

∂bni
∂Ũt

∇i [v
n
t ]

)]

+
J∑
j=1

∑
n

[
λn6,j,t

(
∂2fn5
∂uj∂Ũt

+
I∑
i=1

∂bni
∂uj∂Ũt

∇i [v
n
t ]

)]

+
∑
n

[
−λn7,t

I∑
i=1

∇̂i

[
∂bni,t

∂Ũt
µnt

]]
∀t ≥ 0.

The discretized optimality condition with respect to the value function vt (x), the
distribution µt (x) and the individual jump variable uj,t(x) are.

vt (x) : 0 = −λn5,tρ−
I∑
i=1

∇̂i

[
λn5,tb

n
i,t

]
(115)

+
1

2

I∑
i=1

I∑
k=1

∇i

[
σni,kλ

n
5,t

]
−

J∑
j=1

I∑
i=1

(
∇̂i

[
λn6,j,t

∂bni,t
∂unj,t

])
−(
λn5,t − λn5,t−1

∆t
− ϱλn5,t).
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µt (x) : 0 = −λ4,tfn4,t (116)

+λ7,t(x)

(
I∑
i=1

bi (x, ut(x), Zt)∇i

[
λn7,t
]
+

1

2

I∑
i=1

(
σ2
i

)n△2
i

[
λn7,t
])

+
λn7,t − λn7,t−1

∆t
− ϱλn7,t

ul,t (x) : 0 = −λ4,t
∂f4
∂ul,t

µnt (117)

+
J∑
j=1

λn6,k,t

(
∂2fn5,t

∂unl,t∂u
n
j,t

+
I∑
i=1

∂2bni,t
∂unl,t∂u

n
j,t

∇i [v
n
t ]

)

−
I∑
i=1

∇i

[
λn7,t
] ∂bni,t
∂ul,t

µnt
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3. Discretize, then optimize We follow here the reverse approach, discretizing first
and optimizing next.3.a The discretized planner’s problem

Now first discretize the optimization problem with respect to time (time step ∆t)
and the idiosyncratic state (N grid points, grid step ∆xi). We define the discount factor
β ≡ (1 + ϱ∆t)−1 .

max
Zt,unt ,µ

n
t ,v

n
t

∑
t

βtf0(Zt)

s.t. ∀t
Xt+1 −Xt

∆t
= f1(Zt) (118)

Ut+1 − Ut
∆t

= f2(Zt) (119)

0 = f3(Zt) (120)

Ũt =
N∑
n=1

f4 (x
n, unt , Zt)µ

n
t (121)

ρvnt =
vnt+1 − vnt

∆t
+ f5(x

n, unt , Zt) +
I∑
i=1

bi (x
n, unt , Zt)∇i [v

n
t ] (122)

+
1

2

I∑
i=1

(
σ2
i

)n△2
i [v

n
t ] , ∀n

0 =
∂fn5,t
∂unj,t

+
I∑
i=1

∂bni,t
∂unj,t

∇i [v
n
t ] , ∀j, n. (123)

µnt+1 − µnt
∆t

= −
I∑
i=1

∇̂i

[
bni,tµ

n
t

]
(124)

+
1

2

I∑
i=1

△i

[
σ2
i µ

n
t

]
(125)

X0 = X̄0 (126)

µn0 = µ̄n0 (127)
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3.b The Lagrangian The Lagrangian is

L =
∑
t

βtf0(Zt)

+
∑
t

βtλ1,t

{
Xt+1 −Xt

∆t
− f1(Zt)

}
+
∑
t

βtλ2,t

{
Ut+1 − Ut

∆t
− f2(Zt)

}
+
∑
t

βtλ3,t {−f3(Zt)}

+
∑
t

βtλ4,t

{
Ũt −

∑
n

f4 (x
n, unt , Zt)µ

n
t

}

+
∑
t

∑
n

βtλn5,t

{
−ρvnt +

vnt+1−vnt
∆t

+ f5(x
n, unt , Zt) +

∑I
i=1 bi (x

n, unt , Zt)∇i [v
n
t ]

+
∑I

i=1△2
i [v

n
t ]

}

+
∑
t

∑
n

J∑
j=1

βtλn6,j,t

{
∂fn5,t
∂unj,t

+
I∑
i=1

∂bni,t
∂unj,t

∇i [v
n
t ]

}

+
∑
t

∑
n

βtλn7,t

{
−µnt+1−µnt

∆t
−
∑I

i=1 ∇̂i

[
bni,tµ

n
t

]
+1

2

∑I
i=1△i [σ

2
i µ

n
t ]

}

3.c The optimality conditions The FOCs are

∂L

∂Ut
: 0 =

∂f0,t
∂Ut

− λ1,t
∂f1,t
∂Ut

+ λ2,t

{
− 1

∆t
− ∂f2,t

∂Ut

}
+ β−1λ2,t−1

1

∆t
− λ3,t

∂f3,t
∂Ut

− λ4,t
∑
n

∂fn4,t
∂Ut

µn
t(128)

+
∑
n

λn5,t

{
+
∂fn5,t
∂Ut

+

I∑
i=1

∂bni,t
∂Ut

∇i [v
n
t ]

}

+
∑
n

J∑
j=1

λn6,j,t

{
∂2fn5,t
∂unj,t∂Ut

+

I∑
i=1

∂2bni,t
∂unj,t∂Ut

∇i [v
n
t ]

}

+
∑
n

{
I∑

i=1

(
λn7,t − λni−1

7,t

) [
Ibni,t<0

∂bni,t
∂Ut

µn
t

∆xi

]
+

I∑
i=1

(
λni+1
7,t − λn7,t

) [
Ibni,t>0

∂bni,t
∂Ut

µn
t

∆xi

]}
∀t ≥ 0

∂L

∂Xt
: 0 =

∂f0,t
∂Xt

− λ1,t

{
1

∆t
+
∂f1,t
∂Xt

}
+ β−1λ1,t−1

1

∆t
− λ2,t

∂f2,t
∂Xt

− λ3,t
∂f3,t
∂Xt

− λ4,t
∑
n

∂fn4,t
∂Xt

µn
t
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+
∑
n

λn5,t

{
∂fn5,t
∂Xt

+

I∑
i=1

∂bni,t
∂Xt

∇i [v
n
t ]

}

+
∑
n

∑
j

λn6,j,t

{
∂2fn5,t

∂unj,t∂Xt
+

I∑
i=1

∂2bni,t
∂unj,t∂Xt

∇i [v
n
t ]

}

+
∑
n

{
I∑

i=1

(
λn7,t − λni−1

7,t

) [
Ibni,t<0

∂bni,t
∂Xt

µn
t

∆xi

]
+

I∑
i=1

(
λni+1
7,t − λn7,t

) [
Ibni,t>0

∂bni,t
∂Xt

µn
t

∆xi

]}
∀t > 0

∂L

∂Ũt

: 0 =
∂f0,t

∂Ũt

− λ1,t
∂f1,t

∂Ũt

− λ2,t
∂f2,t

∂Ũt

− λ3,t
∂f3,t

∂Ũt

− λ4,t
∑
n

∂fn4,t

∂Ũt

µn
t

+
∑
n

λn5,t

{
+
∂fn5,t

∂Ũt

+

I∑
i=1

∂bni,t

∂Ũt

∇i [v
n
t ]

}

+
∑
n

∑
j

λn6,j,t

{
∂2fn5,t

∂unj,t∂Ũt

+

I∑
i=1

∂2bni,t

∂unj,t∂Ũt

∇i [v
n
t ]

}

+
∑
n

{
I∑

i=1

(
λn7,t − λni−1

7,t

) [
Ibni,t<0

∂bni,t

∂Ũt

µn
t

∆xi

]
+

I∑
i=1

(
λni+1
7,t − λn7,t

) [
Ibni,t>0

∂bni,t

∂Ũt

µn
t

∆xi

]}
∀t ≥ 0

∂L

∂Ût

: 0 =
∂f0,t

∂Ût

− λ1,t
∂f1,t

∂Ût

− λ2,t
∂f2,t

∂Ût

− λ3,t
∂f3,t

∂Ût

− λ4,t
∑
n

∂fn4,t

∂Ût

µn
t

+
∑
n

λn5,t

{
+
∂fn5,t

∂Ût

+

I∑
i=1

∂bni,t

∂Ût

∇i [v
n
t ]

}

+
∑
n

∑
j

λn6,j,t

{
∂2fn5,t

∂unj,t∂Ût

+

I∑
i=1

∂2bni,t

∂unj,t∂Ût

∇i [v
n
t ]

}

+
∑
n

{
I∑

i=1

(
λn7,t − λni−1

7,t

) [
Ibni,t<0

∂bni,t

∂Ût

µn
t

∆xi

]
+

I∑
i=1

(
λni+1
7,t − λn7,t

) [
Ibni,t>0

∂bni,t

∂Ût

µn
t

∆xi

]}
∀t ≥ 0

∂L

∂vnt
: 0 = λn5,t

{
−ρ− 1

∆t
+

I∑
i=1

bni,t
Ibnt <0 − Ibnt >0

∆xi
−

I∑
i=1

2
(
σ2
i

)n
2 (∆xi)

2

}
(129)

+λn5,t−1β
−1 1

∆t

+

I∑
i=1

λni−1
5,t bni−1

i,t

I
b
ni−1

i,t >0

∆xi
+

I∑
i=1

λni−1
5,t

(
σ2
i

)n
2 (∆xi)

2
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−
I∑

i=1

λni+1
5,t bni+1

i,t

I
b
ni+1

i,t <0

∆xi
+

I∑
i=1

λni+1
5,t

(
σ2
i

)n
2 (∆xi)

2

+

J∑
j=1

I∑
i=1

{
λn6,j,t

{
∂bni,t
∂unj,t

Ibni,t<0 − Ibni,t>0

∆xi

}
+ λni−1

6,j,t

{
∂bni−1

i.t

∂uni−1
j,t

I
b
ni−1

i,t >0

∆xi

}}

−
J∑

j=1

I∑
i=1

λni+1
6,j,t

{
∂bni+1

i,t

∂uni+1
j,t

I
b
ni+1

i,t <0

∆xi

}
(130)

∀t ≥ 0

∂L

∂µn
t

: 0 = −λ4,tfn4,t (131)

+λn7,t

{
1

∆t
−

I∑
i=1

[(
Ibni,t>0 − Ibni,t<0

) bni,t
∆xi

]
−

I∑
i=1

−2
(
σ2
i

)n
2 (∆xi)

2

}

+

{
−

I∑
i=1

λni−1
7,t

[ Ibni,t<0b
n
i,t

∆xi

]
+

I∑
i=1

(
σ2
i

)n
2 (∆xi)

2

}

+

{
−

I∑
i=1

λni+1
7,t

[−Ibni,t>0b
n
i,t

∆xi

]
+

I∑
i=1

(
σ2
i

)n
2 (∆xi)

2

}

+β−1λn7,t−1

{
− 1

∆t

}
∀t > 0

∂L

∂unl,t
: 0 = −λ4,t

∂fn4,t
∂unl,t

µn
t (132)

+βtλn5,t

{
∂fn5,t
∂unl,t

+

I∑
i=1

∂bni,t
∂unl,t

∇i [v
n
t ]

}

+
∑
j

λn6,t

{
∂2fn5,t

∂unj,t∂u
n
l,t

+

I∑
i=1

∂2bni,t
∂unj,t∂u

n
l,t

∇i [v
n
t ]

}

+

I∑
i=1

(
λn7,t − λni−1

7,t

) [
Ibni,t<0

∂bni,t
∂unl,t

µn
t

∆xi

]
+

I∑
i=1

(
λni+1
7,t − λn7,t

) [
Ibni,t>0

∂bni,t
∂unl,t

µn
t

∆xi

]
∀t ≥ 0

By the individual agents’ optimality condition, line 2 of this expression is equal to 0.

4. Compare Finally, by comparing the respective discretized optimality conditions,
we show that the two procedures yield the same equilibrium conditions in the limit.
Consider first the condition for Ut. The optimize-discretize condition is given by (112),

109



which we reproduce here

Ut : 0 = −
(
λ2,t − λ2,t−1

∆
− ϱλ2,t

)
+
∂f0
∂Ut

− λ1,t
∂f1
∂Ut

− λ2,t
∂f2
∂Ut

− λ3,t
∂f3
∂Ut

− λ4,t

N∑
n=1

∂fn4
∂Ut

µnt

+
∑
n

λn5,t

{
∂fn5
∂Ut

+
I∑
i=1

∂bni
∂Ut

∇i [v
n
t ]

}

+
∑
n

J∑
j=1

λn6,j,t

{
∂2fn5,t
∂unj,t∂Ut

+
I∑
i=1

∂2bnt
∂unj,t∂Ut

∇i [v
n
t ]

}

+
∑
n

[
−λn7,t

I∑
i=1

∇̂i

[
∂bni,t
∂Ut

µnt

]]
∀t ≥ 0

The discretize-optimize condition (128), rearranges to

∂L

∂Ut
: 0 = −

(
λ2,t − λ2,t−1

∆t
− β−1 − 1

∆t
λ2,t−1

)
+
∂f0,t
∂Ut

− λ1,t
∂f1,t
∂Ut

− λ2,t
∂f2,t
∂Ut

− λ3,t
∂f3,t
∂Ut

− λ4,t

N∑
n=1

∂fn4,t
∂Ut

µn
t

+

N∑
n=1

λn5,t

{
∂fn5,t
∂Ut

+

I∑
i=1

∂bni
∂Ut

∇i [v
n
t ]

}

+

N∑
n=1

J∑
j=1

λn6,j,t

{
∂2fn5,t
∂unj,t∂Ut

+
∂2bnt

∂unj,t∂Ut
∇i [v

n
t ]

}

+
∑
n

{
I∑

i=1

(
λn7,t − λni−1

7,t

) [
Ibni,t<0

∂bni,t
∂Ut

µn
t

∆xi

]
+

I∑
i=1

(
λni+1
7,t − λn7,t

) [
Ibni,t>0

∂bni,t
∂Ut

µn
t

∆xi

]}
∀t ≥ 0

The second to fourth lines are evidently identical. The last lines also coincide once

we take into account the definition of ∇̂i

[
∂bni,t
∂Ut

µnt

]
=

I
b
ni+1
i,t

<0

∂b
ni+1
i,t
∂Ut

µ
ni+1
t −Ibn

i,t
<0

∂bni,t
∂Ut

µnt

∆xi
+

Ibn
i,t

>0

∂bni,t
∂Ut

µnt −I
b
ni−1
i,t

>0

∂b
ni−1
i,t
∂Ut

µ
ni−1
t

∆xi
.

Finally compare the first lines. Since β ≡ (1 + ϱ∆t)−1 we have that β−1−1
∆t

= ϱ .
The difference between these two equations hence is ∥ϱ (λ2,t − λ2,t−1)∥. In the limit as
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∆t→ 0, and provided that λ2,t features no jumps for t > 0,this difference converges to
zero.The same argument applies to the optimality conditions with respect to Xt with
the difference now proportional to ∥ϱ (λ1,t − λ1,t−1)∥. The optimality conditions with
respect to Ût and Ũt are identical, that is, there is no difference.

Next consider the two discretized optimality conditions with respect to vnt (115) and
(129). After some rearranging they are given by

vt (x) : 0 = −
I∑

i=1

 Ibni,t>0λ
n
5,j,tb

n
i,t − I

b
ni−1

i,t >0
λni−1
5,j,t b

ni−1
i,t

∆xi
+

I
b
ni+1

i,t <0
λni+1
5,j,t b

ni+1
i,t − Ibni,t<0λ

n
5,j,tb

n
i,t

∆xi


+
1

2

I∑
i=1

(
σ2
i

)ni+1
λni+1
5,t +

(
σ2
i

)ni−1
λni−1
5,t − 2

(
σ2
i

)n
λn5,t

(∆xi)
2

−
J∑

j=1

I∑
i=1

 Ibni,t>0λ
n
6,j,t

∂bni,t
∂un

j,t
− I

b
ni−1

i,t >0
λni−1
6,j,t

∂b
ni−1

i,t

∂u
ni−1

j,t

∆xi
+

I
b
ni+1

i,t <0
λni+1
6,j,t

∂b
ni+1

i,t

∂u
ni+1

j,t

− Ibni,t<0λ
n
6,j,t

∂bni,t
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Again these, two expressions are identical up to the last time index in the last line
(λn5 ), and thus the difference is ∥ϱ (λ5,t − λ5,t−1)∥ .

Next, consider the two discretized optimality conditions with respect to µnt (116)
and (131). After some rearranging they are given by

µt (x) : 0 = −λ4,tfn4,t (134)
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Ibni,t>0

λni+1
7,t − λn7,t
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which again differ in ∥ϱ (λ7,t − λ7,t−1)∥ .
Finally, consider the two discretized optimality conditions with respect to unl,t (x),

(117) and (132). After some rearranging they are given by

ul,t (x) : 0 = −λ4,t
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which are identical.To summarize, whether one discretize the optimality conditions of
the planner and then discretizes them, or one discretizes the planner’s problem and
then derives the optimality conditions, one arrives to a set of optimality conditions
that coincide in everything but the timing of the multiplier in the term ϱλt. Provided
that multipliers experience no jumps, the difference between the two approaches goes
to 0 as ∆t→ 0. Note that this issue has nothing to do with heterogeneity.
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D.4 Solving the Nuño and Thomas model using Dynare

Here we apply the “discretize-optimize” methodology outlined in Section D to the
heterogeneous-agent model introduced in Nuño and Thomas (2022). This is a model
à la Aiyagari-Bewley-Huggett with non-state-contingent long-term nominal debt con-
tracts. Finding the optimal policy in this problem requires that the central bank takes
into account not only the dynamics of the state distribution (given by the KF equation)
but also the HJB equation. Figure 16 displays the time-0 optimal policy (inflation) in
this case, compared to the one obtained through the “optimize-discretize” methodology
employed in Nuño and Thomas (2022). Optimal inflation coincides in both cases, up
to a numerical error that is reduced as we increase the number of grid points and we
reduce the time step.

Figure 16: Time-0 optimal monetary policy using the two approaches.
Notes: The figure shows the optimal path of inflation in the Nuño and Thomas (2022) model using the “discretize-
optimize” and “optimize-discretize” methods.
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